Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Couvre la prédiction du contact avec les protéines à l'aide des modèles Potts et des méthodes de pseudo-probabilité, en comparant différentes approches pour la prédiction du contact dans les protéines.
Explore les modèles de régression spatiale, abordant les défis d'autocorrélation spatiale et le concept de modèles de décalage spatial pour corriger les biais et améliorer la précision de l'inférence.
Explore le nettoyage de la matrice de covariance, les estimateurs optimaux et les méthodes invariantes en rotation pour l'optimisation du portefeuille.
Explore les prévisions dans l'analyse des séries chronologiques, les processus de mémoire longue et les modèles ARCH pour la modélisation de la volatilité.
Explore la relaxation et la détermination de la structure dans la spectroscopie RMN, couvrant la relaxation de spin nucléaire, les interactions anisotropes, les expériences NOESY et le protocole de détermination de la structure des protéines.