Inégalité triangulaireEn géométrie, l'inégalité triangulaire est le fait que, dans un triangle, la longueur d'un côté est inférieure à la somme des longueurs des deux autres côtés. Cette inégalité est relativement intuitive. Dans la vie ordinaire, comme dans la géométrie euclidienne, cela se traduit par le fait que la ligne droite est le plus court chemin : le plus court chemin d'un point A à un point B est d'y aller tout droit, sans passer par un troisième point C qui ne serait pas sur la ligne droite.
Réseau (géométrie)En mathématiques, un réseau d'un espace (vectoriel) euclidien est un sous-groupe discret de l’espace, de rang fini n. Par exemple, les vecteurs de Rn à coordonnées entières dans une base forment un réseau de Rn. Cette notion permet de décrire mathématiquement des maillages, comme celui correspondant à la figure 1. thumb|Fig. 1. Un réseau est un ensemble discret disposé dans un espace vectoriel réel de dimension finie de manière régulière, au sens où la différence de deux éléments du réseau est encore élément du réseau.
Triangle équilatéralEn géométrie euclidienne, un triangle équilatéral est un triangle dont les trois côtés ont la même longueur. Ses trois angles internes ont alors la même mesure de 60 degrés, et il constitue ainsi un polygone régulier à trois sommets. Tous les triangles équilatéraux sont semblables. Chaque triangle équilatéral est invariant par trois symétries axiales et deux rotations dont le centre est à la fois le centre de gravité, l'orthocentre et le centre des cercles inscrit et circonscrit au triangle.
TriangleEn géométrie euclidienne, un triangle est une figure plane formée par trois points (appelés sommets) et par les trois segments qui les relient (appelés côtés), délimitant un domaine du plan appelé intérieur. Lorsque les sommets sont distincts deux à deux, en chaque sommet les côtés délimitent un angle intérieur, d'où vient la dénomination de « triangle ». Le triangle est aussi le polygone le plus simple qui délimite une portion du plan et sert ainsi d'élément fondamental pour le découpage et l'approximation de surfaces.
Tétraèdrethumb|Un tétraèdre. thumb|Paul Sérusier, Tétraèdres, vers 1910. En géométrie, les tétraèdres (du grec tétra : quatre) sont des polyèdres de la famille des pyramides, composés de triangulaires, et . Le 3-simplexe est la représentation abstraite du tétraèdre ; dans ce modèle, les arêtes s'identifient aux 6 sous-ensembles à 2 éléments de l'ensemble des quatre sommets, et les faces aux 4 sous-ensembles à 3 éléments. Chaque sommet d'un tétraèdre est relié à tous les autres par une arête, et de même chaque face est reliée à toutes les autres par une arête.
BisectionIn geometry, bisection is the division of something into two equal or congruent parts (having the same shape and size). Usually it involves a bisecting line, also called a 'bisector'. The most often considered types of bisectors are the 'segment bisector' (a line that passes through the midpoint of a given segment) and the 'angle bisector' (a line that passes through the apex of an angle, that divides it into two equal angles). In three-dimensional space, bisection is usually done by a bisecting plane, also called the 'bisector'.