Schéma d'axiomesEn logique mathématique, la notion de schéma d’axiomes généralise celle d'axiome. Un schéma d’axiomes est une formule exprimée dans le métalangage d'un système axiomatique, dans lequel une ou plusieurs métavariables apparaissent. Ces variables, qui sont des constructions métalinguistiques, représentent n'importe quel terme ou sous-formule du système logique, qui peut être (ou ne pas être) tenu de satisfaire certaines conditions. Souvent, de telles conditions exigent que certaines des variables soient libres, ou que certaines variables n'apparaissent pas dans la sous-formule ou le terme.
Paradoxe de Burali-FortiEn mathématiques, le paradoxe de Burali-Forti, paru en 1897, désigne une construction qui conduit dans certaines théories des ensembles ou théories des types trop naïves à une antinomie, c’est-à-dire que la théorie est contradictoire (on dit aussi incohérente ou inconsistante). Dit brièvement, il énonce que, comme on peut définir la borne supérieure d'un ensemble d'ordinaux, si l'ensemble de tous les ordinaux existe, on peut définir un ordinal supérieur strictement à tous les ordinaux, d'où une contradiction.
Ur-elementEn théorie des ensembles, un ur-element (ou urelement) est quelque chose qui n'est pas un ensemble mais qui peut être élément d'un ensemble. Ainsi, si u est un ur-element, et X un ensemble, on peut avoir ou non : u ∈ X, mais X ∈ u est impossible. Ils partagent ainsi avec le seul ensemble vide le fait de ne posséder aucun élément, mais pour des raisons tout à fait différentes : rien ne peut appartenir à un ur-element parce que cela n'a pas de sens, alors que rien n'appartient à l'ensemble vide par définition.
Paradoxe de CantorLe paradoxe de Cantor, ou paradoxe du plus grand cardinal, est un paradoxe de la théorie des ensembles dont l'argument a été découvert par Georg Cantor dans les années 1890. On le trouve dans sa lettre adressée à David Hilbert, datée de 1897. Il est appelé ainsi par Bertrand Russell dans ses Principles of Mathematics de 1903. Le paradoxe énonce que l'existence d'un plus grand cardinal conduit à une contradiction.
Axiome d'extensionnalitéL’axiome d’extensionnalité est l’un des axiomes-clés de la plupart des théories des ensembles, en particulier, des théories des ensembles de Zermelo, et de Zermelo-Fraenkel (ZF). Il énonce essentiellement qu'il est suffisant de vérifier que deux ensembles ont les mêmes éléments pour montrer que ces deux ensembles sont égaux, au sens où ils ont les mêmes propriétés, aucune propriété ne permettra de distinguer un ensemble de l'autre.
Axiome de l'ensemble des partiesEn mathématiques, l'axiome de l'ensemble des parties est l'un des axiomes de la théorie des ensembles, plus précisément des théories des ensembles de Zermelo et de Zermelo-Fraenkel. L'axiome affirme l'existence pour tout ensemble E, d'un ensemble auquel appartiennent tous les sous-ensembles de E, et seulement ceux-ci. Un tel ensemble est nommé ensemble des parties de E, d'où le nom de l'axiome. Cet axiome s'écrit dans le langage formel de la théorie des ensembles, qui est un langage égalitaire du premier ordre avec la relation d'appartenance comme seul symbole primitif non logique.
Set-builder notationIn set theory and its applications to logic, mathematics, and computer science, set-builder notation is a mathematical notation for describing a set by enumerating its elements, or stating the properties that its members must satisfy. Defining sets by properties is also known as set comprehension, set abstraction or as defining a set's intension. Set (mathematics)#Roster notation A set can be described directly by enumerating all of its elements between curly brackets, as in the following two examples: is the set containing the four numbers 3, 7, 15, and 31, and nothing else.
ImprédicativitéL'imprédicativité est un terme du domaine des mathématiques, de la logique, de la théorie des ensembles et de la théorie des types. On dit qu'il y a imprédicativité « lorsqu'un objet parle de lui-même ». Une définition est imprédicative si l'objet défini intervient dans la définition elle-même. Le paradoxe de Russell est un célèbre exemple d'imprédicativité menant à une contradiction : il introduit « l'ensemble de tous les ensembles qui ne se contiennent pas eux-mêmes » (par « contiennent », on comprendra « éléments de ») En réaction à ce paradoxe et à d'autres Henri Poincaré et Bertrand Russell ont énoncé le « principe du cercle vicieux » ou de la pétition de principe.
Universal setIn set theory, a universal set is a set which contains all objects, including itself. In set theory as usually formulated, it can be proven in multiple ways that a universal set does not exist. However, some non-standard variants of set theory include a universal set. Many set theories do not allow for the existence of a universal set. There are several different arguments for its non-existence, based on different choices of axioms for set theory. In Zermelo–Fraenkel set theory, the axiom of regularity and axiom of pairing prevent any set from containing itself.
Axiome de l'ensemble videL'axiome de l'ensemble vide est, en mathématiques, l'un des axiomes possibles de la théorie des ensembles. Comme son nom l'indique, il permet de poser l'existence d'un ensemble vide. Dans les présentations modernes, il n'est plus mentionné parmi les axiomes des théories des ensembles de Zermelo, ou Zermelo-Fraenkel, car il est conséquence en logique du premier ordre du schéma d'axiomes de compréhension.