Espace de Baire (théorie des ensembles)En mathématiques, et plus précisément en topologie générale, l’espace de Baire est le nom donné — d'après René Baire — à l'ensemble de toutes les suites d'entiers, muni d'une certaine topologie. Cet espace est souvent utilisé en théorie descriptive des ensembles, au point que ses éléments sont souvent appelés des « réels ». On le note souvent B, NN, ωω, ou ωω. On appelle espace de Baire, noté NN, le produit cartésien d'un ensemble dénombrable de copies de l'ensemble N des entiers naturels, muni de la topologie produit, où chaque copie de N est munie de la topologie discrète.
Axiome de déterminationL'axiome de détermination est un axiome alternatif de la théorie des ensembles affirmant que certains jeux (au sens de la théorie des jeux) infinis sont déterminés. Cet axiome n'est pas compatible avec l'axiome du choix mais implique l'axiome du choix dénombrable pour les familles d'ensembles de réels et implique également une forme faible de l'hypothèse du continu.
Continuum (set theory)In the mathematical field of set theory, the continuum means the real numbers, or the corresponding (infinite) cardinal number, denoted by . Georg Cantor proved that the cardinality is larger than the smallest infinity, namely, . He also proved that is equal to , the cardinality of the power set of the natural numbers. The cardinality of the continuum is the size of the set of real numbers. The continuum hypothesis is sometimes stated by saying that no cardinality lies between that of the continuum and that of the natural numbers, , or alternatively, that .
Axiome de la réunionEn théorie des ensembles, l’axiome de la réunion (ou «axiome de la somme») est l'un des axiomes de la théorie des ensembles de Zermelo-Fraenkel, ZF. Il affirme que, pour tout ensemble A, il existe un ensemble qui contient tous les éléments des ensembles éléments de l'ensemble A, et seulement ceux-ci (le contexte est celui d'une théorie où tous les objets sont des ensembles, en particulier A est un ensemble d'ensembles, sinon il faut le préciser).
Hyperarithmetical theoryIn recursion theory, hyperarithmetic theory is a generalization of Turing computability. It has close connections with definability in second-order arithmetic and with weak systems of set theory such as Kripke–Platek set theory. It is an important tool in effective descriptive set theory. The central focus of hyperarithmetic theory is the sets of natural numbers known as hyperarithmetic sets. There are three equivalent ways of defining this class of sets; the study of the relationships between these different definitions is one motivation for the study of hyperarithmetical theory.
Luitzen Egbertus Jan BrouwerLuitzen Egbertus Jan Brouwer (né le à Overschie et mort le à Blaricum) est un mathématicien néerlandais. Aîné de trois enfants, ce fils du maître d'école Egbertus Luitzens Brouwer et de Henderika Poutsma, témoigne dès son plus jeune âge d'une intelligence exceptionnelle. À 16 ans seulement, le jeune prodige s'inscrit à l'université d'Amsterdam pour y étudier les mathématiques, sans pour autant négliger ses lectures de chevet, celles des philosophes Emmanuel Kant et Arthur Schopenhauer.
Cardinal mesurableEn mathématiques, un cardinal mesurable est un cardinal sur lequel existe une mesure définie pour tout sous-ensemble. Cette propriété fait qu'un tel cardinal est un grand cardinal. Un cardinal mesurable est un cardinal non dénombrable κ tel qu'il existe une mesure μ non triviale, κ-additive, à valeurs dans , définie sur tous les sous-ensembles de κ ; μ est donc une application de l'ensemble des parties de κ vers telle que : Pour toute famille (avec α
MetamathMetamath est un langage formel et un logiciel associé (un assistant de preuve) pour rassembler, vérifier et étudier les preuves de théorèmes mathématiques. Plusieurs bases de théorèmes avec leurs preuves ont été développés avec Metamath. Elles rassemblent des résultats standards en logique, théorie des ensembles, théorie des nombres, algèbre, topologie, analyse, entre autres domaines.
Cumulative hierarchyIn mathematics, specifically set theory, a cumulative hierarchy is a family of sets indexed by ordinals such that If is a limit ordinal, then Some authors additionally require that or that . The union of the sets of a cumulative hierarchy is often used as a model of set theory. The phrase "the cumulative hierarchy" usually refers to the standard cumulative hierarchy of the von Neumann universe with introduced by . A cumulative hierarchy satisfies a form of the reflection principle: any formula in the language of set theory that holds in the union of the hierarchy also holds in some stages .
Image d'une applicationvignette| est une fonction de dans . L'ovale jaune dans est l'image de . On appelle image d'une application f (d'un ensemble A vers un ensemble B) l' par f de l'ensemble de départ A. C'est donc le sous-ensemble de B contenant les de tous les éléments de A, et uniquement ces images. On le note Im(f). Exemple : Une application est surjective si et seulement si son image coïncide avec son ensemble d'arrivée. Lemme des noyaux Catégorie abélienne Limite projective Noyau (algèbre) (autrement dit : d'une relation