Sophie Germain (1776-1831) est une mathématicienne, physicienne et philosophe française. Pour pouvoir se faire connaitre dans le monde des mathématiques, alors réservées aux hommes, elle utilisa un nom d’emprunt de 1794 à 1807 : Antoine Auguste Le Blanc. C'est sous ce nom qu'elle correspond tout d'abord avec les mathématiciens Carl Friedrich Gauss et Adrien-Marie Legendre, avant d'être reconnue en tant que femme et mathématicienne de premier plan dans le monde académique, bien qu'elle ait appris les mathématiques entièrement en autodidacte, à force de travail et d'obstination. Ses principaux travaux concernent le problème des surfaces vibrantes, pour lequel elle obtient le grand prix des sciences mathématiques en 1815. Elle s'est également intéressée à la démonstration du dernier théorème de Fermat, et obtenu des résultats intermédiaires comme le théorème de Sophie Germain. Ses travaux concernent également l'élasticité des corps. Marie-Sophie Germain naît le rue Saint-Denis à Paris au sein d’une famille bourgeoise, aisée et cultivée, un milieu social qui jouera les premiers rôles à cette époque pré-révolutionnaire. Elle est la deuxième fille d’Ambroise-François Germain (1726–1821), commerçant en soie et tissus et de son épouse Marie-Madeleine Gruguelu. La bibliothèque d’Ambroise-François Germain compte plusieurs écrits mathématiques, dont le Cours de mathématiques à l’usage des gardes du pavillon et de la marine (1766) d’Étienne Bézout et l’Histoire des mathématiques (1758) de Jean-Étienne Montucla. Édités entre 1751 et 1772, les volumes de l’Encyclopédie du mathématicien Jean Le Rond d’Alembert et du philosophe Denis Diderot stimulent l’engagement politique d’Ambroise-François Germain, qui le conduira jusqu’aux bancs de l’Assemblée constituante de 1789, où il siégera comme député du Tiers état jusqu’en . En 1789, à l’âge de treize ans, la vie de Sophie Germain est marquée par l’atmosphère de son époque, au moins sur trois points. D’une part, elle appartient à une famille cultivée, libérale et aisée, qui lui permet d’avoir accès aux textes mathématiques et physiques les plus récents.