Espace de Hilbertvignette|Une photographie de David Hilbert (1862 - 1943) qui a donné son nom aux espaces dont il est question dans cet article. En mathématiques, un espace de Hilbert est un espace vectoriel réel (resp. complexe) muni d'un produit scalaire euclidien (resp. hermitien), qui permet de mesurer des longueurs et des angles et de définir une orthogonalité. De plus, un espace de Hilbert est complet, ce qui permet d'y appliquer des techniques d'analyse. Ces espaces doivent leur nom au mathématicien allemand David Hilbert.
Espace vectoriel quotientEn algèbre linéaire, l'espace vectoriel quotient E/F d'un espace vectoriel E par un sous-espace vectoriel F est la structure naturelle d'espace vectoriel sur l'ensemble quotient de E par la relation d'équivalence définie de la manière suivante : v est en relation avec w si et seulement si v – w appartient à F. C'est donc l'ensemble des classes [v] = v + F, où v parcourt E, muni des lois suivantes : somme vectorielle : [v] + [w] = [v + w] ; multiplication par un scalaire : λ [v] = [λ v].
HomomorphismIn algebra, a homomorphism is a structure-preserving map between two algebraic structures of the same type (such as two groups, two rings, or two vector spaces). The word homomorphism comes from the Ancient Greek language: ὁμός () meaning "same" and μορφή () meaning "form" or "shape". However, the word was apparently introduced to mathematics due to a (mis)translation of German ähnlich meaning "similar" to ὁμός meaning "same". The term "homomorphism" appeared as early as 1892, when it was attributed to the German mathematician Felix Klein (1849–1925).
Suite exacteEn mathématiques, plus particulièrement en algèbre homologique, une suite exacte est une suite (finie ou infinie) d'objets et de morphismes entre ces objets telle que l' de l'un est égale au noyau du suivant. Dans le contexte de la théorie des groupes, on dit que la suite (finie ou infinie) de groupes et de morphismes de groupes est exacte si pour tout entier naturel n on a . Dans ce qui précède, sont des groupes et des morphismes de groupes avec . Dans la suite, 0 dénote le groupe trivial, qui est l'objet nul dans la catégorie des groupes.
Image (category theory)In , a branch of mathematics, the image of a morphism is a generalization of the of a function. Given a and a morphism in , the image of is a monomorphism satisfying the following universal property: There exists a morphism such that . For any object with a morphism and a monomorphism such that , there exists a unique morphism such that . Remarks: such a factorization does not necessarily exist. is unique by definition of monic. therefore by monic. is monic. already implies that is unique.
Category (mathematics)In mathematics, a category (sometimes called an abstract category to distinguish it from a ) is a collection of "objects" that are linked by "arrows". A category has two basic properties: the ability to compose the arrows associatively and the existence of an identity arrow for each object. A simple example is the , whose objects are sets and whose arrows are functions. is a branch of mathematics that seeks to generalize all of mathematics in terms of categories, independent of what their objects and arrows represent.