Isomorphisme musicalEn mathématiques, plus précisément en géométrie différentielle, l'isomorphisme musical (ou isomorphisme canonique ) est un isomorphisme entre le fibré tangent et le fibré cotangent d'une variété pseudo-riemannienne induite par son tenseur métrique. Il existe des isomorphismes similaires sur les variétés symplectiques. Le terme musical fait référence à l'utilisation des symboles (bémol) et (dièse). En notation covariante et contravariante, il est également connu sous le nom d'indice d'élévation et d'abaissement.
Hamiltonian systemA Hamiltonian system is a dynamical system governed by Hamilton's equations. In physics, this dynamical system describes the evolution of a physical system such as a planetary system or an electron in an electromagnetic field. These systems can be studied in both Hamiltonian mechanics and dynamical systems theory. Informally, a Hamiltonian system is a mathematical formalism developed by Hamilton to describe the evolution equations of a physical system.
Produit intérieurEn géométrie différentielle, le produit intérieur est une opération élémentaire sur les formes différentielles, que l'on construit à partir d'un champ de vecteurs. Plus précisément, si est un champ de vecteurs sur une variété différentielle et si désigne l'ensemble des formes différentielles de degré sur alors le produit intérieur par est l'opérateur défini par : pour tous champs de vecteurs sur , C'est une antidérivation de l'algèbre extérieure, i.e., si α est une p-forme et β une forme de degré quelconqu
Champ de vecteurs hamiltonienEn géométrie différentielle et plus précisément en géométrie symplectique, dans l'étude des variétés symplectiques et des variétés de Poisson, un champ de vecteurs hamiltonien est un champ de vecteurs associé à une fonction réelle différentiable appelée hamiltonien de manière semblable au champ de vecteurs gradient en géométrie riemannienne. Cependant, une des différences fondamentales est que le hamiltonien est constant le long de ses courbes intégrales. Le nom vient du mathématicien et physicien William Rowan Hamilton.
Homologie de FloerL'homologie de Floer est une adaptation de l'homologie de Morse en dimension infinie. L'homologie de Floer symplectique (HFS) est une théorie homologique pour une variété symplectique munie d'un symplectomorphisme non-dégénéré. Si le symplectomorphisme est hamiltonien, l'homologie provient de l'étude de la fonctionnelle d'action symplectique sur le revêtement universel de l'espace des lacets de la variété symplectique. L'homologie de Floer symplectique est invariante par isotopie hamiltonienne du symplectomorphisme.
PseudogroupIn mathematics, a pseudogroup is a set of diffeomorphisms between open sets of a space, satisfying group-like and sheaf-like properties. It is a generalisation of the concept of a group, originating however from the geometric approach of Sophus Lie to investigate symmetries of differential equations, rather than out of abstract algebra (such as quasigroup, for example). The modern theory of pseudogroups was developed by Élie Cartan in the early 1900s.
Géométrie de contactLa géométrie de contact est la partie de la géométrie différentielle qui étudie les formes et structures de contact. Elle entretient d'étroits liens avec la géométrie symplectique, la géométrie complexe, la théorie des feuilletages de codimension 1 et les systèmes dynamiques. La géométrie de contact classique est née de l'étude de la thermodynamique et de l'optique géométrique. Une structure de contact sur une variété est un champ d'hyperplans c'est-à-dire la donnée, en tout point de la variété, d'un hyperplan dans l'espace tangent.
Hermitian manifoldIn mathematics, and more specifically in differential geometry, a Hermitian manifold is the complex analogue of a Riemannian manifold. More precisely, a Hermitian manifold is a complex manifold with a smoothly varying Hermitian inner product on each (holomorphic) tangent space. One can also define a Hermitian manifold as a real manifold with a Riemannian metric that preserves a complex structure. A complex structure is essentially an almost complex structure with an integrability condition, and this condition yields a unitary structure (U(n) structure) on the manifold.
Courbe pseudoholomorpheEn topologie et en géométrie, une courbe pseudoholomorphe est une application d'une surface de Riemann, éventuellement à bord, dans une variété presque complexe satisfaisant les équations de Cauchy-Riemann. La régularité est imposée par la régularité de la structure presque complexe utilisée. Introduites en 1985 par Mikhaïl Gromov, elles jouent un rôle central en géométrie symplectique, et interviennent en particulier dans la définition de l'homologie de Floer.
Application momentEn géométrie symplectique, aux actions hamiltoniennes d'un groupe de Lie sur une variété symplectique est associée une application G-équivariante , appelée l'application moment. En un certain sens, elle généralise le moment rencontré en mécanique classique. L'application moment est définie par : où est le champ de vecteurs correspondant à l'action infinitésimale de . Action de groupe Action hamiltonienne Symplectomorphisme Difféomorphisme hamiltonien Contribution à l'étude de l'application moment, EL AZIRI Abdelhamid ; MARLE Charles-Miche Convexity properties of hamiltonian group actions, Principal Guillemin, Victor W.