Fractalevignette|Exemple de figure fractale (détail de l'ensemble de Mandelbrot)|alt=Exemple de figure fractale (détail de l'ensemble de Mandelbrot). vignette|Ensemble de Julia en . Une figure fractale est un objet mathématique qui présente une structure similaire à toutes les échelles. C'est un objet géométrique « infiniment morcelé » dont des détails sont observables à une échelle arbitrairement choisie. En zoomant sur une partie de la figure, il est possible de retrouver toute la figure ; on dit alors qu’elle est « auto similaire ».
Infinithumb|∞ : le symbole infini. Le mot « infini » (-e, -s) est un adjectif servant à qualifier quelque chose qui n'a pas de limite en nombre ou en taille. Il vient du latin infīnītus, dérivé de fīnītus « limité » (avec in-, préfixe négatif), issu lui-même du verbe fīnĭo, fīnīre (« délimiter », mais aussi : « préciser », « déterminer », et intransitivement « finir »), et du nom fīnis (souvent au pluriel, fīnes : « bornes, limites d'un champ », « frontières d'un pays ») ; il signifie donc, littéralement « qui est sans borne », mais aussi « indéterminé » et « indéfini ».
Fractal curveA fractal curve is, loosely, a mathematical curve whose shape retains the same general pattern of irregularity, regardless of how high it is magnified, that is, its graph takes the form of a fractal. In general, fractal curves are nowhere rectifiable curves — that is, they do not have finite length — and every subarc longer than a single point has infinite length. A famous example is the boundary of the Mandelbrot set. Fractal curves and fractal patterns are widespread, in nature, found in such places as broccoli, snowflakes, feet of geckos, frost crystals, and lightning bolts.
Dimension de Minkowski-BouligandEn géométrie fractale, la dimension de Minkowski-Bouligand, également appelée dimension de Minkowski, dimension box-counting ou capacité, est une manière de déterminer la dimension fractale d'un sous-ensemble S dans un espace euclidien ou, plus généralement, dans un espace métrique. Pour calculer cette dimension pour une fractale S, placer cette fractale dans un réseau carré et compter le nombre de cases nécessaires pour recouvrir l'ensemble. La dimension de Minkowski est calculée en observant comment ce nombre de cases évolue à mesure que le réseau s'affine à l'infini.
Dimension de HausdorffEn mathématiques, et plus précisément en topologie, la dimension de Hausdorff d'un espace métrique (X,d) est un nombre réel positif ou nul, éventuellement l'infini. Introduite en 1918 par le mathématicien Felix Hausdorff, elle a été développée par Abram Besicovitch, c'est pourquoi elle est parfois appelée dimension de Hausdorff-Besicovitch. L'exemple le plus simple est l'espace euclidien de dimension (au sens des espaces vectoriels) égale à n (ou plus généralement un espace vectoriel réel de dimension n muni d'une distance associée à une norme) : sa dimension de Hausdorff d est aussi égale à n, dimension de l'espace vectoriel.
GéométrieLa géométrie est à l'origine la branche des mathématiques étudiant les figures du plan et de l'espace (géométrie euclidienne). Depuis la fin du , la géométrie étudie également les figures appartenant à d'autres types d'espaces (géométrie projective, géométrie non euclidienne ). Depuis le début du , certaines méthodes d'étude de figures de ces espaces se sont transformées en branches autonomes des mathématiques : topologie, géométrie différentielle et géométrie algébrique.
L-SystèmeEn informatique théorique, un L-système ou système de Lindenmayer est un système de réécriture ou grammaire formelle, inventé en 1968 par le biologiste hongrois Aristid Lindenmayer. Un L-système modélise le processus de développement et de prolifération de plantes ou de bactéries. C'est une forme de grammaire générative. Ces grammaires ont été mises en œuvre graphiquement par de nombreux auteurs, menant à de spectaculaires images. Une étude systématique d'une certaine formulation a été entreprise par dans les années 1980.
LacunarityLacunarity, from the Latin lacuna, meaning "gap" or "lake", is a specialized term in geometry referring to a measure of how patterns, especially fractals, fill space, where patterns having more or larger gaps generally have higher lacunarity. Beyond being an intuitive measure of gappiness, lacunarity can quantify additional features of patterns such as "rotational invariance" and more generally, heterogeneity. This is illustrated in Figure 1 showing three fractal patterns.
Box countingBox counting is a method of gathering data for analyzing complex patterns by breaking a dataset, object, image, etc. into smaller and smaller pieces, typically "box"-shaped, and analyzing the pieces at each smaller scale. The essence of the process has been compared to zooming in or out using optical or computer based methods to examine how observations of detail change with scale. In box counting, however, rather than changing the magnification or resolution of a lens, the investigator changes the size of the element used to inspect the object or pattern (see Figure 1).
Invariance d'échelleIl y a invariance d'échelle lorsqu'aucune échelle ne caractérise le système. Par exemple, dans un ensemble fractal, les propriétés seront les mêmes quelle que soit la distance à laquelle on se place. Une fonction g est dite invariante d'échelle s'il existe une fonction telle que pour tout x et y : Alors, il existe une constante et un exposant , tels que : En physique, l'invariance d'échelle n'est valable que dans un domaine de taille limité — par exemple, pour un ensemble fractal, on ne peut pas se placer à une échelle plus petite que celle des molécules, ni plus grande que la taille du système.