Truncation (geometry)In geometry, a truncation is an operation in any dimension that cuts polytope vertices, creating a new facet in place of each vertex. The term originates from Kepler's names for the Archimedean solids. In general any polyhedron (or polytope) can also be truncated with a degree of freedom as to how deep the cut is, as shown in Conway polyhedron notation truncation operation. A special kind of truncation, usually implied, is a uniform truncation, a truncation operator applied to a regular polyhedron (or regular polytope) which creates a resulting uniform polyhedron (uniform polytope) with equal edge lengths.
Skew polygonIn geometry, a skew polygon is a polygon whose vertices are not all coplanar. Skew polygons must have at least four vertices. The interior surface (or area) of such a polygon is not uniquely defined. Skew infinite polygons (apeirogons) have vertices which are not all colinear. A zig-zag skew polygon or antiprismatic polygon has vertices which alternate on two parallel planes, and thus must be even-sided. Regular skew polygons in 3 dimensions (and regular skew apeirogons in two dimensions) are always zig-zag.
Prismatic uniform polyhedronIn geometry, a prismatic uniform polyhedron is a uniform polyhedron with dihedral symmetry. They exist in two infinite families, the uniform prisms and the uniform antiprisms. All have their vertices in parallel planes and are therefore prismatoids. Because they are isogonal (vertex-transitive), their vertex arrangement uniquely corresponds to a symmetry group.
Cantellation (geometry)In geometry, a cantellation is a 2nd-order truncation in any dimension that bevels a regular polytope at its edges and at its vertices, creating a new facet in place of each edge and of each vertex. Cantellation also applies to regular tilings and honeycombs. Cantellating a polyhedron is also rectifying its rectification. Cantellation (for polyhedra and tilings) is also called expansion by Alicia Boole Stott: it corresponds to moving the faces of the regular form away from the center, and filling in a new face in the gap for each opened edge and for each opened vertex.
Disphénoïde adouciEn géométrie, le disphénoïde adouci est un des solides de Johnson (J84). C'est un polyèdre qui possède seulement des faces formées de triangles équilatéraux, et est, par conséquent un deltaèdre. Ce n'est pas un polyèdre régulier car certains sommets ont quatre faces et d'autres en ont cinq. C'est un des solides de Johnson élémentaires qui n'apparaît pas à partir de manipulation en « copier/coller » de solides de Platon et de solides d'Archimèdes. Il a douze faces et constitue ainsi un exemple de dodécaèdre.
Antiprisme carré adouciEn géométrie, l'antiprisme carré adouci est un des solides de Johnson (J85). C'est un des solides de Johnson élémentaires qui n'apparaît pas à partir de manipulation en "copier/coller" de solides de Platon et de solides d'Archimède. Il peut être conçu comme un antiprisme carré avec une chaîne de triangles insérés autour du milieu. Un effet similaire peut être réalisé avec un antiprisme triangulaire (un octaèdre), ce qui donne un icosaèdre. Les 92 solides de Johnson ont été nommés et décrits par Norman Johnson en 1966.
Snub (geometry)In geometry, a snub is an operation applied to a polyhedron. The term originates from Kepler's names of two Archimedean solids, for the snub cube (cubus simus) and snub dodecahedron (dodecaedron simum). In general, snubs have chiral symmetry with two forms: with clockwise or counterclockwise orientation. By Kepler's names, a snub can be seen as an expansion of a regular polyhedron: moving the faces apart, twisting them about their centers, adding new polygons centered on the original vertices, and adding pairs of triangles fitting between the original edges.
Polyèdre étoiléEn géométrie, le terme polyèdre étoilé ne semble pas avoir été défini proprement, même si l'objet est pensé dans le sens commun. On peut dire qu'un polyèdre étoilé est un polyèdre qui possède une certaine qualité répétitive de non-convexité lui donnant l'aspect d'une étoile. Il existe deux espèces générales de polyèdres étoilés : Les polyèdres qui s'auto-intersectent d'une manière répétitive. Les polyèdres concaves d'une sorte particulière qui alternent les parties concaves et convexes ou les sommets de selle d'une manière répétitive.
DeltaèdreUn deltaèdre est un polyèdre dont toutes les faces sont des triangles équilatéraux. Le nom est issu de la lettre majuscule du grec delta (Δ), qui a la forme d'un triangle. Il existe une infinité de deltaèdres, mais de ceux-ci, seuls huit sont convexes, ayant quatre, six, huit, dix, douze, quatorze, seize et vingt faces. Le nombre de faces, arêtes et sommets est listé ci-dessous pour chacun des huit deltaèdres convexes. Les deltaèdre ne doivent pas être confondus avec les deltoèdres (épelé avec un "o"), les polyèdres dont les faces sont des cerfs-volants.
Antiprisme pentagonalEn géométrie, l'antiprisme pentagonal est le troisième solide de l'ensemble infini des antiprismes. Celui-ci peuvent être regardé comme un prisme pentagonal dont on a opéré une fraction de tour sur une des deux faces supérieure ou inférieure pour faire coïncider un sommet avec le milieu de l'arête correspondante. Ce qui a pour résultat une suite de triangles en nombre pair sur les côtés, et deux faces pentagonales supérieure et inférieure. Si toutes ses faces sont régulières, c'est un polyèdre semi-régulier.