En mathématiques, plus précisément en théorie des catégories, une quasi-catégorie est une généralisation de la notion de catégorie. L'étude de telles généralisations est connue sous le nom de théorie des catégories supérieures.
Les quasi-catégories ont été introduites par et Vogt en 1973.
André Joyal a fait beaucoup progresser l'étude des quasi-catégories en montrant qu’il existe un analogue pour les quasi-catégories de la plupart des notions de base de la théorie des catégories et même de certaines notions et théorèmes d’un niveau plus avancé. Jacob Lurie a écrit un traité détaillé sur cette théorie en 2009.
Les quasi-catégories sont des ensembles simpliciaux d’un type particulier. Comme les catégories ordinaires, elles contiennent des objets, les 0-simplexes de l'ensemble simplicial et des morphismes entre ces objets, les 1-simplexes. Mais contrairement aux catégories standard, la composition de deux morphismes n'est pas définie de manière unique. Tous les morphismes qui peuvent servir de composition entre deux morphismes donnés sont reliés entre eux par des morphismes inversibles d'ordre supérieur (2-simplexes considérés comme « homotopies »). Ces morphismes d'ordre supérieur peuvent également être composés, mais encore une fois la composition n'est bien définie qu'à des morphismes inversibles d’ordre encore plus élevé près, etc.
L'idée sous-jacente de la théorie des catégories supérieures (du moins lorsque les morphismes supérieurs sont inversibles) est de munir, contrairement à ce que l’on fait en théorie des catégories standard, l’ensemble des morphismes entre deux objets d’une structure d’espace topologique. Cela suggère qu'une catégorie supérieure devrait simplement être une catégorie topologiquement enrichie. Le modèle des quasi-catégories est toutefois mieux adapté aux applications que celui des catégories topologiquement enrichies, bien que Lurie ait prouvé que les deux ont des modèles naturels .
Par définition, une quasi-catégorie C est un ensemble simplicial satisfaisant les conditions internes de Kan : toute « corne de C » (application simpliciale de dans C avec ) possède un prolongement de dans C.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
This course will provide an introduction to model category theory, which is an abstract framework for generalizing homotopy theory beyond topological spaces and continuous maps. We will study numerous
The focus of this reading group is to delve into the concept of the "Magnitude of Metric Spaces". This approach offers an alternative approach to persistent homology to describe a metric space across
Après une introduction à la théorie des catégories, nous appliquerons la théorie générale au cas particulier des groupes, ce qui nous permettra de bien mettre en perspective des notions telles que quo
En mathématiques, plus précisément en théorie de l'homotopie, une catégorie de modèles est une catégorie dotée de trois classes de morphismes, appelés équivalences faibles, fibrations et cofibrations, satisfaisant à certains axiomes. Ceux-ci sont abstraits du comportement homotopique des espaces topologiques et des complexes de chaînes. La théorie des catégories de modèles est une sous-branche de la théorie des catégories et a été introduite par Daniel Quillen en 1967 pour généraliser l'étude de l'homotopie aux catégories et ainsi avoir de nouveaux outils pour travailler avec l'homotopie dans les espaces topologiques.
In mathematics, Kan complexes and Kan fibrations are part of the theory of simplicial sets. Kan fibrations are the fibrations of the standard structure on simplicial sets and are therefore of fundamental importance. Kan complexes are the fibrant objects in this model category. The name is in honor of Daniel Kan. For each n ≥ 0, recall that the , , is the representable simplicial set Applying the geometric realization functor to this simplicial set gives a space homeomorphic to the topological standard -simplex: the convex subspace of Rn+1 consisting of all points such that the coordinates are non-negative and sum to 1.
En mathématiques, un ensemble simplicial X est un objet de nature combinatoire intervenant en topologie. Il est la donnée : d'une famille (X) d'ensembles, indexée par les entiers naturels, les éléments de X étant pensés comme des simplexes de dimension n et pour toute application croissanted'une application le tout tel que Autrement dit : X est un foncteur contravariant, de la catégorie simpliciale Δ dans la catégorie Set des ensembles, ou encore un foncteur covariant de la catégorie opposée Δ dans Set.
In this thesis, we study interactions between algebraic and coalgebraic structures in infinity-categories (more precisely, in the quasicategorical model of (infinity, 1)-categories). We define a notion of a Hopf algebra H in an E-2-monoidal infinity-catego ...
EPFL2022
We extend the group-theoretic notion of conditional flatness for a localization functor to any pointed category, and investigate it in the context of homological categories and of semi-abelian categories. In the presence of functorial fiberwise localizatio ...
CAMBRIDGE UNIV PRESS2023
,
Shadows for bicategories, defined by Ponto, provide a useful framework that generalizes classical and topological Hochschild homology. In this paper, we define Hochschild-type invariants for monoids in a symmetric monoidal, simplicial model category V, as ...