Couvre la représentation de Weil, les opérateurs Heis, le théorème Stone-Neumann, les opérateurs unitaires, la structure algèbre de Lie et la forme symlectique.
Explore les postulats de la mécanique quantique, y compris les états, observables, les systèmes composites, l'équation de Schrödinger, et les états enchevêtrés.
Explore l'application de l'algèbre linéaire en mécanique quantique, mettant l'accent sur les espaces vectoriels, les espaces Hilbert et le théorème spectral.
Explore les représentations spinoriales du groupe de Lorentz et la transformation des champs sous Lorentz, en mettant l'accent sur une approche constructive envers les spineurs.