Théorème de suspension de FreudenthalLe théorème de suspension de Freudenthal est un théorème de mathématiques démontré en 1937 par Hans Freudenthal. C'est un résultat fondamental sur l'homotopie, qui explique le comportement des groupes d'homotopie d'un espace pointé lorsqu'on en prend la suspension et qui conduit à la théorie de l'homotopie stable. Soit X un CW-complexe pointé n-connexe. L'application X → Ω(X ∧ S), où Ω désigne le foncteur espace des lacets et ∧ le smash-produit, induit un morphisme de groupesπ(X) → π(Ω(X ∧ S)) ≃ π(X ∧ S).
Serre spectral sequenceIn mathematics, the Serre spectral sequence (sometimes Leray–Serre spectral sequence to acknowledge earlier work of Jean Leray in the Leray spectral sequence) is an important tool in algebraic topology. It expresses, in the language of homological algebra, the singular (co)homology of the total space X of a (Serre) fibration in terms of the (co)homology of the base space B and the fiber F. The result is due to Jean-Pierre Serre in his doctoral dissertation. Let be a Serre fibration of topological spaces, and let F be the (path-connected) fiber.
CW-complexeEn topologie algébrique, un CW-complexe est un type d'espace topologique, défini par J. H. C. Whitehead pour répondre aux besoins de la théorie de l'homotopie. L'idée était de travailler sur une classe d'objets plus grande que celle des complexes simpliciaux et possédant de meilleures propriétés du point de vue de la théorie des catégories, mais présentant comme eux des propriétés combinatoires se prêtant aux calculs. Le nom CW provient du qualificatif de l'espace topologique, en anglais : closure-finite weak topology, pour « à fermeture finie » et « topologie faible ».
Suite de PuppeLa suite de Puppe — nommée d'après Dieter Puppe — est une construction mathématique en topologie algébrique, plus précisément en théorie de l'homotopie. Soient f : A → B une application continue entre deux CW-complexes et C(f) son cône. On a donc une suite : A → B → C(f). En appliquant à f le foncteur de suspension et en effectuant pour Sf : SA → SB la même construction, on obtient une autre suite : SA → SB → C(Sf).
Path space fibrationIn algebraic topology, the path space fibration over a based space is a fibration of the form where is the path space of X; i.e., equipped with the compact-open topology. is the fiber of over the base point of X; thus it is the loop space of X. The space consists of all maps from I to X that may not preserve the base points; it is called the free path space of X and the fibration given by, say, , is called the free path space fibration. The path space fibration can be understood to be dual to the mapping cone.
Homeomorphism groupIn mathematics, particularly topology, the homeomorphism group of a topological space is the group consisting of all homeomorphisms from the space to itself with function composition as the group operation. Homeomorphism groups are very important in the theory of topological spaces and in general are examples of automorphism groups. Homeomorphism groups are topological invariants in the sense that the homeomorphism groups of homeomorphic topological spaces are isomorphic as groups.
Homotopy sphereIn algebraic topology, a branch of mathematics, a homotopy sphere is an n-manifold that is homotopy equivalent to the n-sphere. It thus has the same homotopy groups and the same homology groups as the n-sphere, and so every homotopy sphere is necessarily a homology sphere. The topological generalized Poincaré conjecture is that any n-dimensional homotopy sphere is homeomorphic to the n-sphere; it was solved by Stephen Smale in dimensions five and higher, by Michael Freedman in dimension 4, and for dimension 3 (the original Poincaré conjecture) by Grigori Perelman in 2005.
Tour de PostnikovEn théorie de l'homotopie, une branche de la topologie algébrique, une tour de Postnikov (ou système de Postnikov) est un objet permettant de reconstruire un espace topologique à partir de ses groupes d'homotopie. Une tour de Postnikov pour un espace X connexe par arcs est un morphisme de X vers une suite d'espaces et d'applications continues, ...→ X →...→ X→ X, tel que chaque application X→X induit des isomorphismes des π pour k ≤ n ; π(X) = 0 pour k > n. Tout CW-complexe connexe possède une telle « tour ».
Théorème d'HurewiczEn topologie algébrique, le cas le plus simple du théorème d'Hurewicz – attribué à Witold Hurewicz – est une description du premier groupe d'homologie singulière d'un espace topologique connexe par arcs à l'aide de son groupe fondamental. Le groupe fondamental, en un point x, d'un espace X, est défini comme l'ensemble des classes d'homotopie de lacets de X en x, muni de la loi de concaténation des lacets. Il est noté π(X, x).
Hans FreudenthalHans Freudenthal ( – ) était un mathématicien juif allemand, naturalisé néerlandais, spécialiste en topologie algébrique mais dont les contributions ont largement débordé ce domaine. Il s'intéressa à l'enseignement des mathématiques. Il fut président de l'ICMI (Commission internationale de l'enseignement mathématique) et une récompense portant son nom est attribuée. On lui doit notamment le problème de Freudenthal, dans lequel « savoir que quelqu'un ne sait pas permet de savoir ».