Propriété topologiqueEn topologie et dans les domaines connexes des mathématiques, une propriété topologique (ou invariant topologique) est une propriété sur un espace topologique qui reste invariant sous l'application d'homéomorphismes. C'est-à-dire que chaque fois qu'un espace topologique X possède cette propriété, chaque espace homéomorphe à X possède également cette propriété. De manière informelle, une propriété topologique est une propriété qui peut entièrement être exprimée à l'aide d'ensemble ouverts.
Fibré principalEn topologie, de manière informelle, un fibré principal sur un espace topologique X est un espace ressemblant localement à un produit de X par un groupe topologique. En particulier, un fibré principal est un espace fibré, mais c'est bien plus encore. Il est muni d'un groupe, le groupe structural, décrivant la manière dont les trivialisations locales se recollent entre elles. La théorie des fibrés principaux recouvre la théorie des fibrés vectoriels, de leurs orientations, de leurs structures riemanniennes, de leurs structures symplectiques, etc.
Fibration de HopfEn géométrie la fibration de Hopf donne une partition de la sphère à 3-dimensions S3 par des grands cercles. Plus précisément, elle définit une structure fibrée sur S3. L'espace de base est la sphère à 2-dimensions S2, la fibre modèle est un cercle S1. Ceci signifie notamment qu'il existe une application p de projection de S3 sur S2, telle que les images réciproques de chaque point de S2 soient des cercles. Cette structure a été découverte par Heinz Hopf en 1931.
N-connexitéDans le domaine mathématique de la topologie algébrique et plus précisément en théorie de l'homotopie, la n-connexité est une généralisation de la connexité par arcs (cas n = 0) et de la connexité simple (cas n = 1) : un espace topologique est dit n-connexe si son homotopie est triviale jusqu'au degré n et une application continue est n-connexe si elle induit des isomorphismes en homotopie « presque » jusqu'au degré n. Pour tout entier naturel n, un espace X est dit n-connexe s'il est connexe par arcs et si ses n premiers groupes d'homotopie π(X) (0 < k ≤ n) sont triviaux.
Théorie de l'homotopieLa théorie de l'homotopie est une branche des mathématiques issue de la topologie algébrique dans laquelle les espaces et applications sont considérés à homotopie près. La notion topologique de déformation est étendue à des contextes algébriques notamment via les structures de complexe différentiel puis d’algèbre A. Étant donné deux équivalences d’homotopie f : X′ → X et g : Y → Y′, l’ensemble des classes d'homotopie des applications continues entre X et Y s’identifie à celui des applications entre X′ et Y′ par composition avec f et g.
Immersion (mathématiques)En géométrie différentielle, une immersion est une application différentiable d'une variété différentielle dans une autre, dont la différentielle en tout point est injective. Soient V et W deux variétés et f une application différentiable de V dans W. On dit que f est une immersion si pour tout x appartenant à V, le rang de l'application linéaire tangente Tf(x) est égal à la dimension de V. On la différencie : de la submersion (le rang de Tf(x) est égal à la dimension de W) ; du plongement (en plus d'être une immersion, f est un homéomorphisme de V sur f(V)).
Suspension (mathématiques)En mathématiques, la suspension est une construction topologique définie par écrasement des extrémités d'un cylindre. Elle permet notamment de définir les sphères S par récurrence. Si l'espace topologique est pointé, sa suspension réduite est le quotient de la suspension par le cylindre sur le point de base, c'est un espace pointé avec un point base canonique. La suspension est un foncteur de la catégorie des espaces topologiques (pointés ou non) dans elle-même.
Espace contractileEn mathématiques, un espace topologique est dit contractile s'il est homotopiquement équivalent à un point. Tous ses groupes d'homotopie sont donc triviaux, ainsi que ses groupes d'homologie de degré > 0. Tout espace vectoriel normé (ou même : tout espace vectoriel topologique sur R) est contractile, à commencer par la droite réelle et le plan complexe. Plus généralement, toute partie étoilée d'un tel espace (en particulier : tout convexe non vide, comme un intervalle réel ou un disque) est clairement contractile.
Homotopy fiberIn mathematics, especially homotopy theory, the homotopy fiber (sometimes called the mapping fiber) is part of a construction that associates a fibration to an arbitrary continuous function of topological spaces . It acts as a homotopy theoretic kernel of a mapping of topological spaces due to the fact it yields a long exact sequence of homotopy groupsMoreover, the homotopy fiber can be found in other contexts, such as homological algebra, where the distinguished trianglegives a long exact sequence analogous to the long exact sequence of homotopy groups.
Espace des lacetsEn mathématiques, l'espace des lacets d'un espace topologique pointé est l'ensemble des applications continues d'un segment dans cet espace, tel que l'image des deux extrémités du segment coïncide avec le point de base. Muni de la topologie compacte-ouverte, il s'agit d'un invariant homotopique. La concaténation et le renversement des lacets en font un h-groupe. L'espace des lacets d'un CW-complexe a le type d'homotopie d'un CW-complexe. L’espace des lacets est la cofibre de l’inclusion de l’espace des chemins pointés dans l’espace des chemins.