Point critique (mathématiques)En analyse à plusieurs variables, un point critique d'une fonction de plusieurs variables, à valeurs numériques, est un point d'annulation de son gradient, c'est-à-dire un point tel que . La valeur prise par la fonction en un point critique s'appelle alors une valeur critique. Les valeurs qui ne sont pas critiques sont appelées valeurs régulières. Les points critiques servent d'intermédiaire pour la recherche des extrémums d'une telle fonction.
Théorème des valeurs extrêmesEn mathématiques, et plus précisément en analyse réelle, le théorème des valeurs extrêmes ou théorème des bornes atteintes ou théorème des bornes ou théorème de Weierstrass énonce qu'une fonction continue sur un segment est bornée et atteint ses bornes. Autrement dit, une telle fonction possède un minimum et un maximum sur ce segment. Ce résultat peut être démontré par la compacité des segments réels, mais repose plus fondamentalement sur la propriété de la borne supérieure.
Point colEn mathématiques, un point col ou point-selle () d'une fonction f définie sur un produit cartésien X × Y de deux ensembles X et Y est un point tel que : atteint un maximum en sur Y ; et atteint un minimum en sur X. Certains auteurs inversent les maximum et minimum ( a un minimum en et a un maximum en ), mais cela ne modifie pas qualitativement les résultats (on peut revenir au cas présent par un changement de variables). Le terme point-selle fait référence à la forme de selle de cheval que prend le graphe de la fonction lorsque X et Y sont des intervalles de .
Point stationnaire350px|thumb|right|Les points stationnaires de la fonction sont marquées par des ronds rouges. Dans ce cas, ce sont des extrema locaux. Les carrés bleus désignent les points d'inflexion. En analyse réelle, un point stationnaire ou point critique d'une fonction dérivable d'une variable réelle est un point de son graphe où sa dérivée s'annule. Visuellement, cela se traduit par un point où la fonction arrête de croître ou de décroître. Pour une fonction de plusieurs variables réelles, un point stationnaire (critique) est un point où le gradient s'annule.
Test de la dérivée premièreEn analyse réelle, le test de la dérivée première permet de déterminer l'allure d'une fonction dérivable en étudiant le signe de sa dérivée. Grâce à ce test, on peut déduire les extrema locaux, le sens de variation de f et les points d'inflexion « horizontaux », permettant ainsi de donner une allure du graphe de la fonction . Soit avec un intervalle ouvert réel (par exemple où et sont des réels). On suppose de plus que dérivable sur .
Dérivée secondeLa dérivée seconde est la dérivée de la dérivée d'une fonction, lorsqu'elle est définie. Elle permet de mesurer l'évolution des taux de variations. Par exemple, la dérivée seconde du déplacement par rapport au temps est la variation de la vitesse (taux de variation du déplacement), soit l'accélération. Si la fonction admet une dérivée seconde, on dit qu'elle est de classe D2 ; si de plus cette dérivée seconde est continue, la fonction est dite de classe C2.
Point d'inflexionthumb|Représentation graphique de la fonction x ↦ x montrant un point d'inflexion aux coordonnées (0, 0). thumb|Point d'inflexion de la fonction arc tangente. En mathématiques, et plus précisément en analyse et en géométrie différentielle, un point d'inflexion est un point où s'opère un changement de concavité d'une courbe plane. En un tel point, la tangente traverse la courbe. C'est pourquoi les points d'inflexion, quand on arrive à les déterminer explicitement, aident à bien représenter l'allure de la courbe.
Fonction concaveEn mathématiques, une fonction f est dite concave lorsque la fonction opposée –f est convexe. Le fait que l'on préfère commencer par définir la notion de fonction convexe et d'en déduire celle de fonction concave trouve son origine dans le fait que l'on définit aisément la notion d'ensemble convexe, alors que celle d'« ensemble concave » est moins naturelle. On définit alors les fonctions convexes comme celles ayant un épigraphe convexe (les fonctions concaves ont un hypographe convexe).
Théorème de Fermat sur les points stationnairesEn analyse réelle, le théorème de Fermat sur les points stationnaires permet, lors de la recherche d'éventuels extrema locaux d'une fonction dérivable, de limiter l'étude aux zéros de sa dérivée et aux bornes de son ensemble de définition. L'énoncé est le suivant : La réciproque est fausse : par exemple, la fonction , en , a une dérivée nulle mais pas d'extremum local. La condition nécessaire pour un extremum local ne s'applique pas aux bornes de l'intervalle. Par exemple, la fonction admet deux extremums globaux (a fortiori locaux), atteints en 0 et 1.
Pierre de FermatPierre de Fermat, né dans la première décennie du , à Beaumont-de-Lomagne (département actuel de Tarn-et-Garonne), près de Montauban, et mort le à Castres (département actuel du Tarn), est un magistrat, polymathe et surtout mathématicien français, surnommé « le prince des amateurs ». Il est aussi poète, habile latiniste et helléniste, et s'est intéressé aux sciences et en particulier à la physique ; on lui doit notamment le principe de Fermat en optique.