Contraction des longueursEn relativité restreinte, la contraction des longueurs désigne la loi suivant laquelle la mesure de la longueur d'un objet en mouvement est diminuée par rapport à la mesure faite dans le référentiel où l'objet est immobile, du fait, notamment, de la relativité de la simultanéité d'un référentiel à l'autre. Toutefois, seule la mesure de la longueur parallèle à la vitesse est contractée, les mesures perpendiculaires à la vitesse ne changent pas d'un référentiel à l'autre. En relativité générale, une contraction des longueurs est aussi prédite.
Facteur de LorentzLe facteur de Lorentz est un paramètre-clé intervenant dans de nombreuses formules de la relativité restreinte. Il s’agit du facteur par lequel le temps, les longueurs et la masse relativistes changent pour un objet tandis que cet objet est en mouvement. Le facteur de Lorentz () est ainsi nommé en l'honneur du mathématicien et physicien néerlandais Hendrik Antoon Lorentz, lauréat du prix Nobel de physique en 1902, qui l'a introduit en 1904 comme rapport de proportionnalité entre deux temps, le temps vrai et le temps local, mais qui apparaissait dans ses travaux antérieurs de 1895 comme rapport de deux longueurs.
MasseEn physique, la masse est une grandeur physique positive intrinsèque d'un corps. On pensait traditionnellement qu'elle était liée à la quantité de matière contenue dans un corps physique, jusqu'à la découverte de l'atome et de la physique des particules. Il a été constaté que différents atomes et différentes particules élémentaires, ayant théoriquement la même quantité de matière, ont néanmoins des masses différentes. En physique newtonienne, c'est une grandeur extensive, c'est-à-dire que la masse d'un corps formé de parties est la somme des masses de ces parties.
Physique théoriquevignette|Discussion entre physiciens théoriciens à l'École de physique des Houches. La physique théorique est la branche de la physique qui étudie l’aspect théorique des lois physiques et en développe le formalisme mathématique. C'est dans ce domaine que l'on crée les théories, les équations et les constantes en rapport avec la physique. Elle constitue un champ d'études intermédiaire entre la physique expérimentale et les mathématiques, et a souvent contribué au développement de l’une comme de l’autre.
Vide (physique)En physique, le vide est l'absence de toute matière. Le vide absolu est donc un milieu statistiquement sans particules élémentaires. Un espace dans lequel les molécules sont fortement raréfiées peut donc être retenu comme une première définition du vide approximatif. Ainsi, il suffit d’utiliser une pompe à vide pour extraire l’air d'une enceinte étanche pour y . La qualité du vide est alors définie par la pression d'air résiduelle, généralement exprimée en pascal, en millibar ou en torr.
Vecteur euclidienEn mathématiques, et plus précisément en géométrie euclidienne, un vecteur euclidien est un objet géométrique possédant une direction, un sens et une norme. On l'utilise par exemple en physique et en ingénierie pour modéliser une force. On parle aussi parfois de vecteur géométrique dans le plan euclidien (deux dimensions) et de vecteur spatial dans l'espace à trois dimensions. Vecteur#HistoireVecteur En physique et en ingénierie, on travaille souvent dans l'espace euclidien.
Relativity of simultaneityIn physics, the relativity of simultaneity is the concept that distant simultaneity – whether two spatially separated events occur at the same time – is not absolute, but depends on the observer's reference frame. This possibility was raised by mathematician Henri Poincaré in 1900, and thereafter became a central idea in the special theory of relativity. According to the special theory of relativity introduced by Albert Einstein, it is impossible to say in an absolute sense that two distinct events occur at the same time if those events are separated in space.
Mass in special relativityThe word "mass" has two meanings in special relativity: invariant mass (also called rest mass) is an invariant quantity which is the same for all observers in all reference frames, while the relativistic mass is dependent on the velocity of the observer. According to the concept of mass–energy equivalence, invariant mass is equivalent to rest energy, while relativistic mass is equivalent to relativistic energy (also called total energy).
Universvignette|redresse=1.8|Représentation à l'échelle logarithmique de l'Univers observable. Au centre figure le Système solaire et, à mesure qu'on s'en éloigne, les étoiles proches, le bras de Persée, la Voie lactée, les galaxies proches, le réseau des structures à grande échelle, le fond diffus cosmologique et, à la périphérie, le plasma invisible du Big Bang. L'Univers, au sens cosmologique, est l'ensemble de tout ce qui existe, décrit à partir d'observations scientifiques et régi par des lois physiques.