Corps de nombresEn mathématiques, un corps de nombres algébriques (ou simplement corps de nombres) est une extension finie K du corps Q des nombres rationnels. En particulier, c'est une extension algébrique : tous les éléments de K sont des nombres algébriques, dont le degré divise le degré de l'extension. C'est aussi une extension séparable car Q est de caractéristique nulle donc parfait. Tout sous-corps de C engendré par un nombre fini de nombres algébriques est un corps de nombres.
Multiplication complexeEn mathématiques, une courbe elliptique est à multiplication complexe si l'anneau de ses endomorphismes est plus grand que celui des entiers (il existe une théorie plus générale de la multiplication complexe pour les variétés abéliennes de dimension supérieure). Cette notion est liée au douzième problème de Hilbert. Un exemple de courbe elliptique avec multiplication complexe est C/Z[i]θ où Z[i] est l'anneau des entiers de Gauss, et θ est n'importe quel nombre complexe différent de zéro.
Discriminant d'un corps de nombresdroite|vignette|upright=1.6|Un domaine fondamental de l'anneau des entiers du corps K obtenu à partir de en adjoignant une racine de . Ce domaine fondamental se trouve à l'intérieur de . Le discriminant de K est 49 = 7. En conséquence, le volume du domaine fondamental est 7 et K n'est ramifié qu'en 7. En mathématiques, le discriminant d'un corps de nombres est un invariant numérique qui, moralement, mesure la taille de l'anneau des entiers de ce corps de nombres.
Théorème de l'idéal principalEn mathématiques, le théorème de l'idéal principal en théorie des corps de classes, assure que tout idéal de l'anneau des entiers d'un corps de nombres K, vu comme idéal de l'anneau des entiers du corps de classes de Hilbert de K, est principal. Plus précisément : les extensions abéliennes, et les extensions non ramifiées, sont stables par compositum. Il existe donc une extension abélienne non ramifiée maximale L de K, appelée le corps de classes de Hilbert de K ; pour tout idéal I de l'anneau OK des entiers de K, l'idéal IOL de OL est principal.
Borne de MinkowskiEn théorie algébrique des nombres, la borne de Minkowski donne un majorant de la norme des idéaux à considérer pour déterminer le nombre de classes d'un corps de nombres K. Il porte le nom du mathématicien Hermann Minkowski. Soit D le discriminant de K, n son degré sur , et le nombre de plongements complexes où est le nombre de plongements réels. Alors chaque classe du groupe des classes d'idéaux de K contient un idéal de O dont la norme est inférieure ou égale à la borne de Minkowski La constante de Minkowski pour le corps K est cette borne MK.
Ideal numberIn number theory an ideal number is an algebraic integer which represents an ideal in the ring of integers of a number field; the idea was developed by Ernst Kummer, and led to Richard Dedekind's definition of ideals for rings. An ideal in the ring of integers of an algebraic number field is principal if it consists of multiples of a single element of the ring, and nonprincipal otherwise. By the principal ideal theorem any nonprincipal ideal becomes principal when extended to an ideal of the Hilbert class field.
Théorie des corps de classesvignette|Les racines cinquièmes de l'unité dans le plan complexe. Ajouter ces racines aux nombres rationnels génère une extension abélienne. En mathématiques, la théorie des corps de classes est une branche majeure de la théorie algébrique des nombres qui a pour objet la classification des extensions abéliennes, c'est-à-dire galoisiennes et de groupe de Galois commutatif, d'un corps commutatif donné. Plus précisément, il s'agit de décrire et de construire ces extensions en termes de propriétés arithmétiques du corps de base lui-même.
Idéal principalEn mathématiques, plus particulièrement dans la théorie des anneaux, un idéal principal est un idéal engendré par un seul élément. Soit A un anneau. Un idéal à droite I est dit principal à droite s'il est égal à l'idéal à droite engendré par un élément a, c'est-à-dire si I = aA := { ax | x ∈ A }. Un idéal à gauche I est dit principal à gauche s'il est égal à l'idéal à gauche engendré par un élément a, c'est-à-dire si I = Aa := { xa | x ∈ A }.
Groupe des classes d'idéauxEn mathématiques, et plus précisément en algèbre, la théorie des corps de nombres – les extensions finies du corps Q des rationnels – fait apparaître un groupe abélien fini construit à partir de chacun de ces corps : son groupe des classes d'idéaux. Les premiers groupes de classes rencontrés en algèbre furent des groupes de classes de formes quadratiques : dans le cas des formes quadratiques binaires, dont l'étude a été faite par Gauss, une loi de composition est définie sur certaines classes d'équivalence de formes.
Théorie algébrique des nombresEn mathématiques, la théorie algébrique des nombres est la branche de la théorie des nombres utilisant des outils issus de l'algèbre. Son origine est l'étude des nombres entiers et particulièrement les équations diophantiennes. Pour en résoudre certaines, il est utile de considérer d'autres entiers, dits algébriques. Un exemple est donné par le théorème des deux carrés de Fermat utilisant les entiers de Gauss. Ces ensembles sont équipés de deux lois — une addition et une multiplication — qui vérifient les mêmes propriétés élémentaires que les entiers relatifs : on parle d'anneaux.