Corps de nombresEn mathématiques, un corps de nombres algébriques (ou simplement corps de nombres) est une extension finie K du corps Q des nombres rationnels. En particulier, c'est une extension algébrique : tous les éléments de K sont des nombres algébriques, dont le degré divise le degré de l'extension. C'est aussi une extension séparable car Q est de caractéristique nulle donc parfait. Tout sous-corps de C engendré par un nombre fini de nombres algébriques est un corps de nombres.
Forme traceEn mathématiques la forme trace est un concept associé à la théorie de Galois et à la théorie algébrique des nombres. Si L est une extension finie d'un corps commutatif K, la forme trace est la forme bilinéaire symétrique sur le K-espace vectoriel L, qui fait correspondre au couple la trace de l'application linéaire , de L dans L. Dans le cas d'un anneau d'entiers algébriques d'un corps de nombres (c'est-à-dire d'une extension finie du corps Q des rationnels), la forme trace possède une propriété remarquable : son déterminant ne dépend pas de la base choisie.
Norme d'idéalEn algèbre commutative, la norme d'un idéal est une généralisation de la notion de norme d'un élément dans une extension de corps. Il est particulièrement important en théorie des nombres puisqu'il mesure la taille d'un idéal d'un anneau d'entiers R a priori compliqué en fonction d'un idéal dans un anneau plus simple. Lorsque l'anneau plus simple est Z, la norme d'un idéal non nul I de R est simplement le cardinal de l'anneau quotient fini R/I. Soit A un anneau de Dedekind, K son corps des fractions et B sa fermeture intégrale dans une extension finie séparable L de K.
Symbole de Kronecker (théorie des nombres)En théorie des nombres, le symbole de Kronecker, écrit comme ou , est une généralisation du symbole de Jacobi à tous les entiers . Il a été introduit par Leopold Kronecker en 1885. Soit être un entier non nul, factorisé comme où est une unité (c'est-à-dire ), et les sont premiers. Soit un entier. Le symbole Kronecker est défini par Pour impair, le nombre est tout simplement le symbole de Legendre habituel. On définit par Puisqu'il prolonge le symbole Jacobi, la quantité vaut simplement lorsque .
Fonction zêta de DedekindEn mathématiques, la fonction zêta de Dedekind est une série de Dirichlet définie pour tout corps de nombres K. C'est la fonction de la variable complexe s définie par la somme infinie : prise sur tous les idéaux I non nuls de l'anneau O des entiers de K, où N(I) désigne la norme de I (relative au corps Q des rationnels). Cette norme est égale au cardinal de l'anneau quotient O/I. En particulier, ζ est la fonction zêta de Riemann. Les propriétés de la fonction méromorphe ζ ont une signification considérable en théorie algébrique des nombres.
Corps de classes de HilbertEn théorie algébrique des nombres, le corps de Hilbert H(K) d'un corps de nombres algébriques K est l'extension abélienne non ramifiée maximale de ce corps de nombres. Cet objet doit son nom au mathématicien allemand David Hilbert. Son étude est à la fois une étape importante, et un archétype, pour la théorie des corps de classes : via l'isomorphisme de réciprocité (symbole d'Artin) de la correspondance du corps de classes, le groupe de Galois Gal(H(K)/K) est isomorphe au groupe des classes du corps K.
Problème du nombre de classes pour les corps quadratiques imaginairesEn mathématiques, le problème du nombre de classes de Gauss pour les corps quadratiques imaginaires, au sens usuel, est de fournir pour chaque entier n ≥ 1, la liste complète des corps quadratiques imaginaires dont l'anneau des entiers a un nombre de classes égal à n. C'est une question de calcul effectif. La première démonstration (Hans Heilbronn, 1934) qu'une telle liste est finie ne fournissait pas, même en théorie, un moyen de la calculer (voir Résultats effectifs en théorie des nombres).
Quadratic fieldIn algebraic number theory, a quadratic field is an algebraic number field of degree two over , the rational numbers. Every such quadratic field is some where is a (uniquely defined) square-free integer different from and . If , the corresponding quadratic field is called a real quadratic field, and, if , it is called an imaginary quadratic field or a complex quadratic field, corresponding to whether or not it is a subfield of the field of the real numbers.
Décomposition des idéaux premiers dans les extensions galoisiennesEn mathématiques, l'interaction entre le groupe de Galois G d'une extension galoisienne de corps de nombres L/K (ou de corps de nombres p-adiques, ou de corps de fonctions), et la manière dont les idéaux premiers de l'anneau O des entiers se décomposent sous forme de produits d'idéaux premiers de O, est à la base de nombreux développements fructueux en théorie algébrique des nombres. Le cas d'une extension non nécessairement galoisienne est traitée dans l'article « Décomposition des idéaux premiers ».
Formule du nombre de classesEn théorie des nombres, la formule du nombre de classes relie de nombreux invariants importants d'un corps de nombres à une valeur spécifique de sa fonction zêta de Dedekind. Nous partons des données suivantes : K est un corps de nombres. où est le nombre de plongements réels de K, et plongements complexes K. la fonction zêta de Dedekind de K. le nombre de classes, le cardinal du groupe des classes d'idéaux de K. le régulateur de K. le nombre de racines de l'unité dans K. est le discriminant de l'extension .