Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Explore les espaces tangents en tant que directions de mouvement libre sur des sous-groupes, offrant une notion de linéarisation géométriquement satisfaisante.
Introduit les bases de la géométrie différentielle pour les courbes et les surfaces paramétriques, la courbure de couverture, les vecteurs tangents et l'optimisation des surfaces.
Couvre les bases de l'optimisation contrainte, y compris les directions tangentes, les sous-problèmes de la région de confiance et les conditions d'optimalité nécessaires.
Introduit Manopt, une boîte à outils pour l'optimisation sur les manifolds, couvrant le gradient et les contrôles hessiens, les appels de solveur et la mise en cache manuelle.
Introduit des courbes planes projectives, des degrés, des composantes, des multiplicités, des nombres d'intersection, des tangentes et des points multiples, aboutissant à l'énoncé du théorème de Bézout et de ses conséquences.
Explore la linéarité des espaces tangents, la définition des vecteurs tangents sans un espace d'intégration et leurs opérations, ainsi que l'équivalence des différentes notions d'espace tangents.