Espace pointéEn topologie, un espace pointé est un espace topologique dont on spécifie un point particulier comme étant le point de base. Formellement, il s'agit donc d'un couple (E, x) pour lequel x est un élément de E. Une application pointée entre deux espaces pointés est une application continue préservant les points de base. Les espaces pointés sont les objets d'une catégorie, notée parfois Top, dont les morphismes sont les applications pointées. Cette catégorie admet le point comme objet nul.
Catégorie des anneauxEn mathématiques, la catégorie des anneaux est une construction qui rend compte abstraitement des propriétés des anneaux en algèbre. Dans ce contexte, « anneau » signifie toujours anneau unitaire. La catégorie des anneaux, notée Ring, est la catégorie définie ainsi : Les objets sont les anneaux ; Les morphismes sont les morphismes d'anneaux, avec la composition usuelle, et l'identité est la fonction identité sur un anneau donné. La sous-catégorie pleine de Ring, dont les objets sont les anneaux commutatifs, forme la catégorie des anneaux commutatifs, notée CRing.
Produit cartésienvignette|Illustration d'un produit cartésien A x B où A={x,y,z} et B={1,2,3}. Cet article fait référence au concept mathématique sur les ensembles. Pour les graphes, voir produit cartésien de graphes. En mathématiques, le produit cartésien de deux ensembles X et Y, appelé également ensemble-produit, est l'ensemble de tous les couples dont la première composante appartient à X et la seconde à Y. On généralise facilement cette notion, valable pour deux ensembles, à celle de produit cartésien fini, qui est un ensemble de n-uplets dont les composantes appartiennent à n ensembles.
Catégorie des ensemblesEn mathématiques, plus précisément en théorie des catégories, la catégorie des ensembles, notée Set ou Ens, est la catégorie dont les objets sont les ensembles, et dont les morphismes sont les applications d'un ensemble dans un autre. Sa définition est motivée par le fait qu'en théorie des ensembles usuelle, il n'existe pas d'« ensemble de tous les ensembles », car l'existence d'un tel objet résulterait en une contradiction logique : le paradoxe de Russell.
Diagonal functorIn , a branch of mathematics, the diagonal functor is given by , which maps as well as morphisms. This functor can be employed to give a succinct alternate description of the product of objects within the : a product is a universal arrow from to . The arrow comprises the projection maps. More generally, given a , one may construct the , the objects of which are called . For each object in , there is a constant diagram that maps every object in to and every morphism in to .
Produit directLa plupart des structures algébriques permettent de construire de façon très simple une structure produit sur le produit cartésien des ensembles sous-jacents. Plus généralement, . C'est le cas de la topologie produit dans la catégorie des espaces topologiques. Soient E un ensemble muni d'une loi de composition interne et F un ensemble muni d'une loi de composition interne . On peut définir une loi de composition interne sur le produit cartésien E×F de la façon suivante : Si et sont associatives, alors la loi est associative.
Produit direct (groupes)En mathématiques, et plus particulièrement en théorie des groupes, le produit direct d'une famille de groupes est une structure de groupe qui se définit naturellement sur le produit cartésien des ensembles sous-jacents à ces groupes. Soient et deux groupes. Désignons par leur produit cartésien (ou, plus exactement, le produit cartésien de leurs ensembles sous-jacents). Il est naturel de définir sur une loi de composition composante par composante : le produit apparaissant dans le second membre étant calculé dans et le produit dans .
Catégorie discrèteEn théorie des catégories, une branche des mathématiques, une catégorie discrète est une catégorie dont les seuls morphismes sont les identités : homC(X, X) = {idX} pour tout objet X ; homC(X, Y) = ∅ pour tous objets X ≠ Y. L'existence des identités étant imposée par la définition de catégorie, on peut reformuler ce qui précède par une condition sur la cardinalité des ensembles de morphismes : | hom C ( X, Y ) | vaut 1 lorsque X = Y et 0 lorsque X ≠Y . Autrement dit, le nombre de morphismes de chaque ensembles de morphismes est minimal.