In logic and probability theory, two events (or propositions) are mutually exclusive or disjoint if they cannot both occur at the same time. A clear example is the set of outcomes of a single coin toss, which can result in either heads or tails, but not both. In the coin-tossing example, both outcomes are, in theory, collectively exhaustive, which means that at least one of the outcomes must happen, so these two possibilities together exhaust all the possibilities. However, not all mutually exclusive events are collectively exhaustive. For example, the outcomes 1 and 4 of a single roll of a six-sided die are mutually exclusive (both cannot happen at the same time) but not collectively exhaustive (there are other possible outcomes; 2,3,5,6). Exclusive disjunction In logic, two mutually exclusive propositions are propositions that logically cannot be true in the same sense at the same time. To say that more than two propositions are mutually exclusive, depending on the context, means that one cannot be true if the other one is true, or at least one of them cannot be true. The term pairwise mutually exclusive always means that two of them cannot be true simultaneously. In probability theory, events E1, E2, ..., En are said to be mutually exclusive if the occurrence of any one of them implies the non-occurrence of the remaining n − 1 events. Therefore, two mutually exclusive events cannot both occur. Formally said, the intersection of each two of them is empty (the null event): A ∩ B = ∅. In consequence, mutually exclusive events have the property: P(A ∩ B) = 0. For example, in a standard 52-card deck with two colors it is impossible to draw a card that is both red and a club because clubs are always black. If just one card is drawn from the deck, either a red card (heart or diamond) or a black card (club or spade) will be drawn. When A and B are mutually exclusive, P(A ∪ B) = P(A) + P(B). To find the probability of drawing a red card or a club, for example, add together the probability of drawing a red card and the probability of drawing a club.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (1)
CS-101: Advanced information, computation, communication I
Discrete mathematics is a discipline with applications to almost all areas of study. It provides a set of indispensable tools to computer science in particular. This course reviews (familiar) topics a
Séances de cours associées (17)
Lovsz Lemme Locale: Bases
Couvre les bases du lemme local de Lovsz, y compris les mauvais événements et les pseudo-probabilités mutuellement indépendants.
Probabilité avancée: théorème de Bayes et variables aléatoires
Couvre les concepts avancés de probabilité, y compris le théorème de Bayes et les variables aléatoires.
Distributions de probabilités : notions de base
Présente les distributions de probabilité, la distribution uniforme, les probabilités d'événements, les compléments, les unions et les événements disjoints.
Afficher plus
Publications associées (3)
Concepts associés (4)
Multinomial logistic regression
In statistics, multinomial logistic regression is a classification method that generalizes logistic regression to multiclass problems, i.e. with more than two possible discrete outcomes. That is, it is a model that is used to predict the probabilities of the different possible outcomes of a categorically distributed dependent variable, given a set of independent variables (which may be real-valued, binary-valued, categorical-valued, etc.).
Faux dilemme
Le faux dilemme, appelé aussi exclusion du tiers, fausse dichotomie ou énumération incomplète, est un raisonnement fallacieux qui consiste à présenter deux solutions à un problème donné comme si elles étaient les deux seules possibles, alors qu'en réalité, il en existe d'autres. En rhétorique, cette dichotomisation vise à réduire une situation complexe à une alternative entre deux options, pouvant conduire au manichéisme (pensée en noir et blanc). « Soit le créationnisme est vrai, soit le darwinisme est vrai.
Régression logistique
En statistiques, la régression logistique ou modèle logit est un modèle de régression binomiale. Comme pour tous les modèles de régression binomiale, il s'agit d'expliquer au mieux une variable binaire (la présence ou l'absence d'une caractéristique donnée) par des observations réelles nombreuses, grâce à un modèle mathématique. En d'autres termes d'associer une variable aléatoire de Bernoulli (génériquement notée ) à un vecteur de variables aléatoires . La régression logistique constitue un cas particulier de modèle linéaire généralisé.
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.