Lack-of-fit sum of squaresIn statistics, a sum of squares due to lack of fit, or more tersely a lack-of-fit sum of squares, is one of the components of a partition of the sum of squares of residuals in an analysis of variance, used in the numerator in an F-test of the null hypothesis that says that a proposed model fits well. The other component is the pure-error sum of squares. The pure-error sum of squares is the sum of squared deviations of each value of the dependent variable from the average value over all observations sharing its independent variable value(s).
Test de BartlettEn statistique, le test de Bartlett du nom du statisticien anglais Maurice Stevenson Bartlett ( – ) est utilisé en statistique pour évaluer si k échantillons indépendants sont issus de populations de même variance (condition dite d'homoscédasticité). C'est un test paramétrique. Tout comme le test de Fisher, le test d'égalité des variances de Bartlett s'effondre totalement dès que l'on s'écarte, même légèrement, de la distribution gaussienne.
Critère d'information bayésienLe critère d'information bayésien (en anglais bayesian information criterion, en abrégé BIC), aussi appelé critère d'information de Schwarz, est un critère d'information dérivé du critère d'information d'Akaike proposé par en 1978. À la différence du critère d'information d'Akaike, la pénalité dépend de la taille de l'échantillon et pas seulement du nombre de paramètres. Il s'écrit : avec la vraisemblance du modèle estimée, le nombre d'observations dans l'échantillon et le nombre de paramètres libres du modèle.
Test de Fisher d'égalité de deux variancesEn statistique, le test F d'égalité de deux variances, est un test d'hypothèse qui permet de tester l'hypothèse nulle que deux lois normales ont la même variance. Il fait partie du grand ensemble de tests appelé "test F". Soient deux variables aléatoires indépendantes et deux échantillons , . On veut tester , si les moyennes et sont inconnues on les estime par et : La statistique de test est avec et On rejette (au niveau ) l'hypothèse nulle si la réalisation de la statistique de test est soit plus grande que le quantile d'ordre soit plus petite que le quantile de la loi de Fisher correspondante.
Test de LeveneEn statistique, le Test de Levene est une statistique déductive utilisée pour évaluer l'égalité de variance pour une variable calculée pour deux groupes ou plus. Certaines procédures statistiques courantes supposent que les variances des populations à partir desquelles différents échantillons sont prélevés sont égales. Le test de Levene évalue cette hypothèse. Il teste l'hypothèse nulle que les variances de population sont égales (appelées « homogénéité de la variance » ou homoscédasticité).
T-statisticIn statistics, the t-statistic is the ratio of the departure of the estimated value of a parameter from its hypothesized value to its standard error. It is used in hypothesis testing via Student's t-test. The t-statistic is used in a t-test to determine whether to support or reject the null hypothesis. It is very similar to the z-score but with the difference that t-statistic is used when the sample size is small or the population standard deviation is unknown.
Robustesse (statistiques)En statistiques, la robustesse d'un estimateur est sa capacité à ne pas être perturbé par une modification dans une petite partie des données ou dans les paramètres du modèle choisi pour l'estimation. Ricardo A. Maronna, R. Douglas Martin et Victor J. Yohai; Robust Statistics - Theory and Methods, Wiley Series in Probability and Statistics (2006). Dagnelie P.; Statistique théorique et appliquée. Tome 2 : Inférence statistique à une et à deux dimensions, Paris et Bruxelles (2006), De Boeck et Larcier.
Residual sum of squaresIn statistics, the residual sum of squares (RSS), also known as the sum of squared residuals (SSR) or the sum of squared estimate of errors (SSE), is the sum of the squares of residuals (deviations predicted from actual empirical values of data). It is a measure of the discrepancy between the data and an estimation model, such as a linear regression. A small RSS indicates a tight fit of the model to the data. It is used as an optimality criterion in parameter selection and model selection.