Logique paracohérenteEn logique mathématique, une logique paracohérente (aussi appelé logique paraconsistante) est un système logique qui tolère les contradictions, contrairement au système de la logique classique. Les logiques tolérantes aux incohérences sont étudiées depuis au moins 1910, avec des esquisses remontant sans doute au temps d'Aristote. Le terme paracohérent - (à côté du cohérent, paraconsistent en anglais) - n'a été employé qu'après 1976 par le philosophe péruvien .
Logique philosophiqueLa logique philosophique est un domaine de la philosophie dans lequel les méthodes de la logique ont traditionnellement été utilisées pour résoudre ou faire avancer la discussion des problèmes philosophiques. Parmi les contributeurs à ce domaine, Sibyl Wolfram souligne l'étude de l'argumentation, du sens et de la vérité, tandis que Colin McGinn présente l'identité, l'existence, la prédication, la nécessité et la vérité comme les thèmes principaux de son livre sur le sujet.
Logique ternaireLa logique ternaire, ou logique 3 états, est une branche du calcul des propositions qui étend l'algèbre de Boole, en considérant, en plus des états VRAI et FAUX, l'état INCONNU. Dans la logique ternaire de Stephen Cole Kleene, les tables de vérité des fonctions de base sont les suivantes : D'une certaine manière, ces propriétés correspondent à l'intuition : par exemple, si on ignore si A est vrai ou faux, son inverse est tout aussi incertain. Les autres fonctions logiques se déduisent de par leur définition, la distributivité continuant à s'appliquer.
Double negationIn propositional logic, double negation is the theorem that states that "If a statement is true, then it is not the case that the statement is not true." This is expressed by saying that a proposition A is logically equivalent to not (not-A), or by the formula A ≡ ~(~A) where the sign ≡ expresses logical equivalence and the sign ~ expresses negation. Like the law of the excluded middle, this principle is considered to be a law of thought in classical logic, but it is disallowed by intuitionistic logic.
Implication (logique)En logique mathématique, l'implication est l'un des connecteurs binaires du langage du calcul des propositions, généralement représenté par le symbole « ⇒ » et se lisant « ... implique ... », « ... seulement si ... » ou, de façon équivalente, « si ..., alors ... » comme dans la phrase « s'il pleut, alors il y a des nuages ». L'implication admet des interprétations différentes selon les différents systèmes logiques (logique classique, modale, intuitionniste, etc.).
Table de véritéUne table de vérité (parfois appelée fonction de vérité) est une table mathématique utilisée en logique classique — en particulier le calcul propositionnel classique et l'algèbre de Boole — pour représenter de manière sémantique des expressions logiques et calculer la valeur de leur fonction relativement à chacun de leurs arguments fonctionnels (chaque combinaison de valeur assumée par leurs variables logiques).