Compact elementIn the mathematical area of order theory, the compact elements or finite elements of a partially ordered set are those elements that cannot be subsumed by a supremum of any non-empty directed set that does not already contain members above the compact element. This notion of compactness simultaneously generalizes the notions of finite sets in set theory, compact sets in topology, and finitely generated modules in algebra. (There are other notions of compactness in mathematics.
Join and meetIn mathematics, specifically order theory, the join of a subset of a partially ordered set is the supremum (least upper bound) of denoted and similarly, the meet of is the infimum (greatest lower bound), denoted In general, the join and meet of a subset of a partially ordered set need not exist. Join and meet are dual to one another with respect to order inversion. A partially ordered set in which all pairs have a join is a join-semilattice. Dually, a partially ordered set in which all pairs have a meet is a meet-semilattice.
Point fixeEn mathématiques, pour une application f d'un ensemble E dans lui-même, un élément x de E est un point fixe de f si f(x) = x. Exemples : dans le plan, la symétrie par rapport à un point A admet un unique point fixe : A ; l'application inverse (définie sur l'ensemble des réels non nuls) admet deux points fixes : –1 et 1, solutions de l'équation équivalente à l'équation . Graphiquement, les points fixes d'une fonction f (d'une variable réelle, à valeurs réelles) sont les points d'intersection de la droite d'équation y = x avec la courbe d'équation y = f(x).
SemilatticeIn mathematics, a join-semilattice (or upper semilattice) is a partially ordered set that has a join (a least upper bound) for any nonempty finite subset. Dually, a meet-semilattice (or lower semilattice) is a partially ordered set which has a meet (or greatest lower bound) for any nonempty finite subset. Every join-semilattice is a meet-semilattice in the inverse order and vice versa.
Complete latticeIn mathematics, a complete lattice is a partially ordered set in which all subsets have both a supremum (join) and an infimum (meet). A lattice which satisfies at least one of these properties is known as a conditionally complete lattice. Specifically, every non-empty finite lattice is complete. Complete lattices appear in many applications in mathematics and computer science. Being a special instance of lattices, they are studied both in order theory and universal algebra.
Espace fonctionnelEn mathématiques, un espace fonctionnel est un ensemble d'applications d'une certaine forme d'un ensemble vers un ensemble Il est appelé « espace » car, selon les cas, il peut être un espace topologique, un espace vectoriel, ou les deux. Les espaces fonctionnels apparaissent dans différents domaines des mathématiques : en théorie des ensembles, l'ensemble des parties d'un ensemble peut être identifié avec l'ensemble des fonctions de à valeurs dans , noté .
Bounded complete posetIn the mathematical field of order theory, a partially ordered set is bounded complete if all of its subsets that have some upper bound also have a least upper bound. Such a partial order can also be called consistently or coherently complete (Visser 2004, p. 182), since any upper bound of a set can be interpreted as some consistent (non-contradictory) piece of information that extends all the information present in the set. Hence the presence of some upper bound in a way guarantees the consistency of a set.
Least fixed pointIn order theory, a branch of mathematics, the least fixed point (lfp or LFP, sometimes also smallest fixed point) of a function from a partially ordered set to itself is the fixed point which is less than each other fixed point, according to the order of the poset. A function need not have a least fixed point, but if it does then the least fixed point is unique. With the usual order on the real numbers, the least fixed point of the real function f(x) = x2 is x = 0 (since the only other fixed point is 1 and 0 < 1).
Topologie d'AlexandroffEn mathématiques, une topologie d'Alexandroff est une topologie pour laquelle l'intersection d'une famille quelconque d'ouverts est un ouvert (et pas seulement l'intersection d'une famille finie d'ouverts). Cette notion a été introduite en 1937 par Pavel Alexandroff. Un espace topologique vérifie cette propriété si et seulement si sa topologie est cohérente avec ses sous-, c'est pourquoi un tel espace est aussi appelé espace finiment engendré. Les topologies d'Alexandroff sur un ensemble X sont en bijection avec les préordres sur X.