Résumé
En mathématiques, une suite de polynômes orthogonaux est une suite infinie de polynômes p0(x), p1(x), p2(x) ... à coefficients réels, dans laquelle chaque pn(x) est de degré n, et telle que les polynômes de la suite sont orthogonaux deux à deux pour un produit scalaire de fonctions donné. Cette notion est utilisée par exemple en cryptologie ou en analyse numérique. Elle permet de résoudre de nombreux problèmes de physique, comme en mécanique des fluides ou en traitement du signal. De nombreux types de polynômes orthogonaux particuliers comme ceux de Legendre, de Tchebychev permettent d'approcher une fonction et, par leurs propriétés, de résoudre plus simplement des équations différentielles complexes. Le produit scalaire de fonctions le plus simple est l'intégrale du produit de ces fonctions, sur un intervalle borné : Plus généralement, on peut introduire une « fonction poids » W(x) dans l'intégrale (sur l'intervalle d'intégration ]a , b[, W doit être à valeurs finies et strictement positives, et l'intégrale du produit de la fonction poids par un polynôme doit être finie ; les bornes a , b peuvent être infinies) : Avec cette définition du produit scalaire, deux fonctions sont orthogonales entre elles si leur produit scalaire est égal à zéro (de la même manière que deux vecteurs sont orthogonaux (perpendiculaires) si leur produit scalaire égale zéro). On introduit alors la norme associée : ; le produit scalaire fait de l'ensemble de toutes les fonctions de norme finie un espace de Hilbert. L'intervalle d'intégration est appelé intervalle d'orthogonalité. Le domaine des polynômes orthogonaux s'est développé à la fin du à partir d'une étude sur les fractions continues par Pafnouti Tchebychev et a été poursuivi par Andreï Markov et Thomas Joannes Stieltjes. Gábor Szegő, Sergueï Bernstein, Naum Akhiezer, , Yakov Geronimus, , , , et Richard Askey ont également travaillé sur le sujet. De multiples applications en ont découlé en mathématiques et en physique. vignette|upright=1.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.