Test de StudentEn statistique, un test de Student, ou test t, désigne n'importe quel test statistique paramétrique où la statistique de test calculée suit une loi de Student lorsque l’hypothèse nulle est vraie. gauche|vignette|Façade de la brasserie historique Guinness de St. James. vignette|William Sealy Gosset, qui inventa le test t, sous le pseudonyme Student. Le test de Student et la loi de probabilités qui lui correspond ont été publiés en 1908 dans la revue Biometrika par William Gosset.
Statistique de testEn statistique, une statistique de test - aussi appelée variable de décision - est une variable aléatoire construite à partir d'un échantillon statistique permettant de formuler une règle de décision pour un test statistique. Cette statistique n'est pas unique, ce qui permet de construire différentes règles de décision et de les comparer à l'aide de la notion de puissance statistique. Il est impératif de connaitre sa loi de probabilité lorsque l'hypothèse nulle est vraie. Sa loi sous l'hypothèse alternative est souvent inconnue.
One- and two-tailed testsIn statistical significance testing, a one-tailed test and a two-tailed test are alternative ways of computing the statistical significance of a parameter inferred from a data set, in terms of a test statistic. A two-tailed test is appropriate if the estimated value is greater or less than a certain range of values, for example, whether a test taker may score above or below a specific range of scores. This method is used for null hypothesis testing and if the estimated value exists in the critical areas, the alternative hypothesis is accepted over the null hypothesis.
Valeur pvignette|redresse=1.5|Illustration de la valeur-p. X désigne la loi de probabilité de la statistique de test et z la valeur calculée de la statistique de test. Dans un test statistique, la valeur-p (en anglais p-value pour probability value), parfois aussi appelée p-valeur, est la probabilité pour un modèle statistique donné sous l'hypothèse nulle d'obtenir une valeur au moins aussi extrême que celle observée. L'usage de la valeur-p est courant dans de nombreux domaines de recherche comme la physique, la psychologie, l'économie et les sciences de la vie.
Cote Z (statistiques)La cote Z correspond au nombre d'écarts types séparant un résultat de la moyenne. Au Québec, cette cote était la cote principalement utilisée pour évaluer le rendement des étudiants collégiaux par les universités. Elle existe toujours en tant que composante de la cote R. La cote Z se calcule de la même façon que la variable centrée réduite : où différence entre le résultat et la moyenne, divisé par l'écart-type valeur Moyenne du groupe Écart type du groupe Les universités du Québec utilisaient la cote Z jusqu'en 1994 pour sélectionner les étudiants.
Test du χ² de PearsonEn statistique, le test du χ2 de Pearson ou test du χ2 d'indépendance est un test statistique qui s'applique sur des données catégorielles pour évaluer la probabilité de retrouver la différence de répartition observée entre les catégories si celles-ci étaient indépendantes dans le processus de répartition sous-jacent. Il convient aux données non-appariées prises sur de grands échantillons (n>30). Il est le test du χ2 le plus communément utilisé (comparativement aux autres tests du χ2 tels que le test du χ2 de Yates, le test du rapport de vraisemblance ou le test du porte-manteau.
Test du rapport de vraisemblanceEn statistiques, le test du rapport de vraisemblance est un test statistique qui permet de tester un modèle paramétrique contraint contre un non contraint. Si on appelle le vecteur des paramètres estimés par la méthode du maximum de vraisemblance, on considère un test du type : contre On définit alors l'estimateur du maximum de vraisemblance et l'estimateur du maximum de vraisemblance sous .
Puissance statistiqueLa puissance statistique d'un test est en statistique la probabilité de rejeter l'hypothèse nulle (par exemple l'hypothèse selon laquelle les groupes sont identiques au regard d'une variable) sachant que l'hypothèse nulle est incorrecte (en réalité les groupes sont différents). On peut l'exprimer sous la forme 1-β où β est le risque de c'est-à-dire le risque de ne pas démontrer que deux groupes sont différents alors qu'ils le sont dans la réalité.
Location testA location test is a statistical hypothesis test that compares the location parameter of a statistical population to a given constant, or that compares the location parameters of two statistical populations to each other. Most commonly, the location parameter (or parameters) of interest are expected values, but location tests based on medians or other measures of location are also used. The one-sample location test compares the location parameter of one sample to a given constant.
Paired difference testIn statistics, a paired difference test is a type of location test that is used when comparing two sets of paired measurements to assess whether their population means differ. A paired difference test uses additional information about the sample that is not present in an ordinary unpaired testing situation, either to increase the statistical power, or to reduce the effects of confounders.