Indicateur de tendance centralevignette|Diagramme d'une loi binomiale avec des indicateurs de tendance centrale (comme la moyenne au centre). En statistique, un indicateur de tendance centrale est une valeur résumant une série statistique pour une variable quantitative ou ordinale. Les deux principaux sont la moyenne et la médiane, mais on trouve parfois aussi la valeur centrale (moyenne des valeurs minimale et maximale) ou le mode. Ce dernier n’étant pas nécessairement unique pour une série statistique, sa définition ne s’obtient pas directement comme une fonction des termes de la série.
Moyenne géométrique pondéréeEn statistiques, si on considère l'ensemble de données suivant : X = { x1, x2, ..., xn} et les poids associés : W = { w1, w2, ..., wn} la moyenne géométrique pondérée se calcule de la manière suivante : Si tous les poids sont égaux, la moyenne géométrique pondérée est la même que la moyenne géométrique. Il existe également des versions pondérées des autres moyennes. La plus connue étant sans doute la moyenne arithmétique pondérée, appelée simplement moyenne pondérée. Un autre exemple de moyenne pondérée est la moyenne harmonique pondérée.
CovarianceEn théorie des probabilités et en statistique, la covariance entre deux variables aléatoires est un nombre permettant de quantifier leurs écarts conjoints par rapport à leurs espérances respectives. Elle s’utilise également pour deux séries de données numériques (écarts par rapport aux moyennes). La covariance de deux variables aléatoires indépendantes est nulle, bien que la réciproque ne soit pas toujours vraie. La covariance est une extension de la notion de variance.
Reduced chi-squared statisticIn statistics, the reduced chi-square statistic is used extensively in goodness of fit testing. It is also known as mean squared weighted deviation (MSWD) in isotopic dating and variance of unit weight in the context of weighted least squares. Its square root is called regression standard error, standard error of the regression, or standard error of the equation (see ) It is defined as chi-square per degree of freedom: where the chi-squared is a weighted sum of squared deviations: with inputs: variance , observations O, and calculated data C.
Ratio estimatorThe ratio estimator is a statistical estimator for the ratio of means of two random variables. Ratio estimates are biased and corrections must be made when they are used in experimental or survey work. The ratio estimates are asymmetrical and symmetrical tests such as the t test should not be used to generate confidence intervals. The bias is of the order O(1/n) (see big O notation) so as the sample size (n) increases, the bias will asymptotically approach 0. Therefore, the estimator is approximately unbiased for large sample sizes.
Bootstrap (statistiques)En statistiques, les techniques de bootstrap sont des méthodes d'inférence statistique basées sur la réplication multiple des données à partir du jeu de données étudié, selon les techniques de rééchantillonnage. Elles datent de la fin des années 1970, époque où la possibilité de calculs informatiques intensifs devient abordable. On calculait depuis près d'un siècle des estimations : mesures de dispersion (variance, écart-type), intervalles de confiance, tables de décision pour des tests d'hypothèse, etc.
Ratio distributionA ratio distribution (also known as a quotient distribution) is a probability distribution constructed as the distribution of the ratio of random variables having two other known distributions. Given two (usually independent) random variables X and Y, the distribution of the random variable Z that is formed as the ratio Z = X/Y is a ratio distribution. An example is the Cauchy distribution (also called the normal ratio distribution), which comes about as the ratio of two normally distributed variables with zero mean.
Cote Z (statistiques)La cote Z correspond au nombre d'écarts types séparant un résultat de la moyenne. Au Québec, cette cote était la cote principalement utilisée pour évaluer le rendement des étudiants collégiaux par les universités. Elle existe toujours en tant que composante de la cote R. La cote Z se calcule de la même façon que la variable centrée réduite : où différence entre le résultat et la moyenne, divisé par l'écart-type valeur Moyenne du groupe Écart type du groupe Les universités du Québec utilisaient la cote Z jusqu'en 1994 pour sélectionner les étudiants.
Moyenne tronquéeUne moyenne tronquée, ou moyenne réduite, est une mesure statistique de centralité, similaire à la moyenne arithmétique et à la médiane, qui consiste à calculer une moyenne arithmétique en éliminant les valeurs extrêmes. Les , ont été inventées pour pallier la sensibilité des statistiques aux valeurs aberrantes, ce qu'on appelle la robustesse statistique.