In mathematics, the classical orthogonal polynomials are the most widely used orthogonal polynomials: the Hermite polynomials, Laguerre polynomials, Jacobi polynomials (including as a special case the Gegenbauer polynomials, Chebyshev polynomials, and Legendre polynomials). They have many important applications in such areas as mathematical physics (in particular, the theory of random matrices), approximation theory, numerical analysis, and many others. Classical orthogonal polynomials appeared in the early 19th century in the works of Adrien-Marie Legendre, who introduced the Legendre polynomials. In the late 19th century, the study of continued fractions to solve the moment problem by P. L. Chebyshev and then A.A. Markov and T.J. Stieltjes led to the general notion of orthogonal polynomials. For given polynomials and the classical orthogonal polynomials are characterized by being solutions of the differential equation with to be determined constants . There are several more general definitions of orthogonal classical polynomials; for example, use the term for all polynomials in the Askey scheme. In general, the orthogonal polynomials with respect to a weight satisfy The relations above define up to multiplication by a number. Various normalisations are used to fix the constant, e.g. The classical orthogonal polynomials correspond to the following three families of weights: The standard normalisation (also called standardization) is detailed below. Jacobi polynomials For the Jacobi polynomials are given by the formula They are normalised (standardized) by and satisfy the orthogonality condition The Jacobi polynomials are solutions to the differential equation The Jacobi polynomials with are called the Gegenbauer polynomials (with parameter ) For , these are called the Legendre polynomials (for which the interval of orthogonality is [−1, 1] and the weight function is simply 1): For , one obtains the Chebyshev polynomials (of the second and first kind, respectively).

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (16)
MATH-111(e): Linear Algebra
L'objectif du cours est d'introduire les notions de base de l'algèbre linéaire et ses applications.
MATH-111(a): Linear Algebra
L'objectif du cours est d'introduire les notions de base de l'algèbre linéaire et ses applications.
PHYS-216: Mathematical methods (for SPH)
Ce cours est un complément aux cours d'analyse et d'algèbre linéaire qui apporte des méthodes et des techniques mathématiques supplémentaires requises pour les cours de physique de 3e année, notamment
Afficher plus
Publications associées (56)
Concepts associés (5)
Suite de polynômes orthogonaux
En mathématiques, une suite de polynômes orthogonaux est une suite infinie de polynômes p0(x), p1(x), p2(x) ... à coefficients réels, dans laquelle chaque pn(x) est de degré n, et telle que les polynômes de la suite sont orthogonaux deux à deux pour un produit scalaire de fonctions donné. Cette notion est utilisée par exemple en cryptologie ou en analyse numérique. Elle permet de résoudre de nombreux problèmes de physique, comme en mécanique des fluides ou en traitement du signal.
Polynôme de Gegenbauer
thumb|right|320px|Tracé du polynôme de Gegenbauer C(x) pour n=10 et m=1 sur le plan complexe entre -2-2i et 2+2i En mathématiques, les polynômes de Gegenbauer ou polynômes ultrasphériques sont une classe de polynômes orthogonaux. Ils sont nommés ainsi en l'honneur de Leopold Gegenbauer (1849-1903). Ils sont obtenus à partir des séries hypergéométriques dans les cas où la série est en fait finie : où est la factorielle décroissante.
Formule de Rodrigues
En mathématiques, la formule de Rodrigues (anciennement appelée formule de Ivory-Jacobi) est une formule impliquant les polynômes de Legendre, indépendamment découverte par Olinde Rodrigues, James Ivory et Charles Gustave Jacob Jacobi. Le nom « formule de Rodrigues » a été introduit par Eduard Heine en 1878, après que Hermite eut souligné, dès 1865, que Rodrigues a été le premier à la découvrir. Le terme est également utilisé pour décrire des formules similaires pour d'autres suites de polynômes orthogonaux.
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.