Géométrie elliptiqueUne géométrie elliptique est une géométrie non euclidienne. Les axiomes sont identiques à ceux de la géométrie euclidienne à l'exception de l'axiome des parallèles : en géométrie elliptique, étant donné une droite et un point extérieur à cette droite, il n'existe aucune droite parallèle à cette droite passant par ce point. Il est équivalent de dire que la somme des angles d'un triangle est toujours supérieure à .
Transversal (geometry)In geometry, a transversal is a line that passes through two lines in the same plane at two distinct points. Transversals play a role in establishing whether two or more other lines in the Euclidean plane are parallel. The intersections of a transversal with two lines create various types of pairs of angles: consecutive interior angles, consecutive exterior angles, corresponding angles, and alternate angles. As a consequence of Euclid's parallel postulate, if the two lines are parallel, consecutive interior angles are supplementary, corresponding angles are equal, and alternate angles are equal.
Géométrie sphériqueLa géométrie sphérique est une branche de la géométrie qui s'intéresse à la surface bidimensionnelle d'une sphère. C'est un exemple de géométrie non euclidienne. En géométrie plane, les concepts de base sont les points et les droites. Sur une surface plus générale, les points gardent leur sens usuel ; par contre, les équivalents des droites sont définies comme les lignes matérialisant le chemin le plus court entre les points, qu'on appelle des géodésiques.
Motion (geometry)In geometry, a motion is an isometry of a metric space. For instance, a plane equipped with the Euclidean distance metric is a metric space in which a mapping associating congruent figures is a motion. More generally, the term motion is a synonym for surjective isometry in metric geometry, including elliptic geometry and hyperbolic geometry. In the latter case, hyperbolic motions provide an approach to the subject for beginners. Motions can be divided into direct and indirect motions.
Eugenio BeltramiEugenio Beltrami (1835-1900), appelé Eugène Beltrami en français, est un mathématicien et physicien italien. Il est connu pour ses travaux sur l'élasticité, l'hydrodynamique, l’électricité et le magnétisme, mais son nom est surtout associé à l'histoire de la géométrie, et au rôle fondamental qu'il joua dans l'affermissement des fondements de la géométrie non euclidienne. Sa famille paternelle comptait des artistes, dont son père, un peintre passionné de miniatures.
RectangleEn géométrie, un rectangle est un quadrilatère dont les quatre angles sont droits. Un quadrilatère est un polygone (donc une figure plane) constitué de quatre points (appelés sommets) et de quatre segments (ou côtés) liant ces sommets deux à deux de manière à délimiter un contour fermé. Fichier:Six Quadrilaterals.svg|Quadrilatères. Les deux situés en haut à gauche (vert et marron) sont des rectangles. Fichier:Rectangle 2.svg|Un rectangle, ses deux diagonales et un [[angle droit]] codé.
Géométrie non euclidienneLa géométrie non euclidienne (GNE) est, en mathématiques, une théorie géométrique ayant recours aux axiomes et postulats posés par Euclide dans les Éléments, sauf le postulat des parallèles. Les différentes géométries non euclidiennes sont issues initialement de la volonté de démontrer la proposition du cinquième postulat, qui apparaissait peu satisfaisant en tant que postulat car trop complexe et peut-être redondant avec les autres postulats).
EuclideEuclide (en Eukleídês), dit parfois Euclide d'Alexandrie, est un mathématicien de la Grèce antique, auteur d’un traité de mathématiques, qui constitue l'un des textes fondateurs de cette discipline en Occident. Aucune information fiable n'est parvenue sur la vie ou la mort d'Euclide ; il est possible qu'il ait vécu vers 300 avant notre ère. Son ouvrage le plus célèbre, les Éléments, est un des plus anciens traités connus présentant de manière systématique, à partir d'axiomes et de postulats, un large ensemble de théorèmes accompagnés de leurs démonstrations.
Parallélisme (géométrie)En géométrie affine, le parallélisme est une propriété relative aux droites, aux plans ou plus généralement aux sous-espaces affines. La notion de parallélisme a été initialement formulée par Euclide dans ses Éléments, mais sa présentation a évolué dans le temps, passant d'une définition axiomatique à une simple définition. La notion de parallélisme est introduite dans le Livre I des Éléments d'Euclide. Pour Euclide, une droite s'apparente plutôt à un segment.
Thābit ibn QurraAbu'l Hasan Thabit ibn Qurra' ibn Marwan al-Sabi al-Harrani (ابو الحسن ثابت بن قرة بن مروان الحراني) mieux connu sous le nom de Thābit ibn Qurra (ثابت بن قرة) (Harran, 826 ou 836 - ) est un astronome, astrologue, mathématicien, philosophe et théoricien de la musique syrien ayant vécu dans le califat abbasside. En latin, il était connu sous le nom de Thebit. Abu al Hassan Thabit ibn Qurra est issu de la communauté des Sabéens, qui a son centre à Harran.