Argument de la diagonale de Cantorvignette|Illustration de la diagonale de Cantor En mathématiques, l'argument de la diagonale, ou argument diagonal, fut inventé par le mathématicien allemand Georg Cantor et publié en 1891. Il permit à ce dernier de donner une deuxième démonstration de la non-dénombrabilité de l'ensemble des nombres réels, beaucoup plus simple, selon Cantor lui-même, que la première qu'il avait publiée en 1874, et qui utilisait des arguments d'analyse, en particulier le théorème des segments emboîtés.
Universal setIn set theory, a universal set is a set which contains all objects, including itself. In set theory as usually formulated, it can be proven in multiple ways that a universal set does not exist. However, some non-standard variants of set theory include a universal set. Many set theories do not allow for the existence of a universal set. There are several different arguments for its non-existence, based on different choices of axioms for set theory. In Zermelo–Fraenkel set theory, the axiom of regularity and axiom of pairing prevent any set from containing itself.
Théorie des ensembles de Zermelo-Fraenkelvignette|L'appartenance En mathématiques, la théorie des ensembles de Zermelo-Fraenkel, abrégée en ZF, est une axiomatisation en logique du premier ordre de la théorie des ensembles telle qu'elle avait été développée dans le dernier quart du par Georg Cantor. L'axiomatisation a été élaborée au début du par plusieurs mathématiciens dont Ernst Zermelo et Abraham Fraenkel mais aussi Thoralf Skolem.
Nombre réelEn mathématiques, un nombre réel est un nombre qui peut être représenté par une partie entière et une liste finie ou infinie de décimales. Cette définition s'applique donc aux nombres rationnels, dont les décimales se répètent de façon périodique à partir d'un certain rang, mais aussi à d'autres nombres dits irrationnels, tels que la racine carrée de 2, π et e.
Cardinalité (mathématiques)En mathématiques, la cardinalité est une notion de taille pour les ensembles. Lorsqu'un ensemble est fini, c'est-à-dire si ses éléments peuvent être listés par une suite finie, son cardinal est la longueur de cette suite, autrement dit il s'agit du nombre d'éléments de l'ensemble. En particulier, le cardinal de l'ensemble vide est zéro. La généralisation de cette notion aux ensembles infinis est fondée sur la relation d'équipotence : deux ensembles sont dits équipotents s'il existe une bijection de l'un dans l'autre.
Ensemble dénombrableEn mathématiques, un ensemble est dit dénombrable, ou infini dénombrable, lorsque ses éléments peuvent être listés sans omission ni répétition dans une suite indexée par les entiers. Certains ensembles infinis, au contraire, contiennent « trop » d'éléments pour être parcourus complètement par l'infinité des entiers et sont donc dits « non dénombrables ». Il existe deux usages du mot « dénombrable » en mathématiques, suivant que l'on comprend ou non parmi les ensembles dénombrables les ensembles finis, dont les éléments peuvent être numérotés par les entiers positifs inférieurs à une valeur donnée.
Paradoxe de SkolemEn logique mathématique et en philosophie analytique, le paradoxe de Skolem est une conséquence troublante du théorème de Löwenheim-Skolem en théorie des ensembles. Il affirme qu'une théorie des ensembles, comme ZFC, si elle a un modèle, a un modèle dénombrable, bien que l'on puisse par ailleurs définir une formule qui exprime l'existence d'ensembles non dénombrables. C'est un paradoxe au sens premier de ce terme : il va contre le sens commun, mais ce n'est pas une antinomie, une contradiction que l'on pourrait déduire dans la théorie.