In mathematics, an axiom of countability is a property of certain mathematical objects that asserts the existence of a countable set with certain properties. Without such an axiom, such a set might not provably exist.
Important countability axioms for topological spaces include:
sequential space: a set is open if every sequence convergent to a point in the set is eventually in the set
first-countable space: every point has a countable neighbourhood basis (local base)
second-countable space: the topology has a countable base
separable space: there exists a countable dense subset
Lindelöf space: every open cover has a countable subcover
σ-compact space: there exists a countable cover by compact spaces
These axioms are related to each other in the following ways:
Every first-countable space is sequential.
Every second-countable space is first countable, separable, and Lindelöf.
Every σ-compact space is Lindelöf.
Every metric space is first countable.
For metric spaces, second-countability, separability, and the Lindelöf property are all equivalent.
Other examples of mathematical objects obeying axioms of countability include sigma-finite measure spaces, and lattices of countable type.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Discrete mathematics is a discipline with applications to almost all areas of study. It provides a set of indispensable tools to computer science in particular. This course reviews (familiar) topics a
The course is based on Durrett's text book
Probability: Theory and Examples.
It takes the measure theory approach to probability theory, wherein expectations are simply abstract integrals.
The course provides students with the tools to approach the study of nonlinear systems and chaotic dynamics. Emphasis is given to concrete examples and numerical applications are carried out during th
En mathématiques, le premier ordinal non dénombrable, noté ω1 ou parfois Ω, est le plus petit ordinal non dénombrable ; c'est aussi l'ensemble des ordinaux finis ou infinis dénombrables. En d'autres termes, c'est l'ordinal de Hartogs de tout ensemble infini dénombrable. ω1 est le supremum de tous les ordinaux au plus dénombrables ; ce sont ses éléments. Comme tout ordinal (dans l'approche de von Neumann), ω1 est un ensemble bien ordonné, la relation d'ordre étant la relation d'appartenance : ∈.
En mathématiques, plus précisément en topologie, un espace est dit à base dénombrable si sa topologie admet une base dénombrable. La plupart des espaces usuels de l'analyse et beaucoup d'espaces en analyse fonctionnelle sont à base dénombrable. Tout espace à base dénombrable est à la fois séparable, à bases dénombrables de voisinages et de Lindelöf (en particulier, pour un espace à base dénombrable, les trois propriétés quasi-compact/dénombrablement compact/séquentiellement compact sont équivalentes).
En mathématiques, un espace topologique X est à bases dénombrables de voisinages si tout point x de X possède une base de voisinages dénombrable, c'est-à-dire s'il existe une suite V, V, V, ... de voisinages de x telle que tout voisinage de x contienne l'un des V. Cette notion a été introduite en 1914 par Felix Hausdorff. Tout espace métrique (donc aussi tout espace métrisable) est à bases dénombrables de voisinages (prendre par exemple V = une boule (ouverte ou fermée) de centre x et de rayon 2).
Ulam asked whether all Lie groups can be represented faithfully on a countable set. We establish a reduction of Ulam's problem to the case of simple Lie groups. In particular, we solve the problem for all solvable Lie groups and more generally Lie groups w ...
San Diego2023
It is proved that the total length of any set of countably many rectifiable curves whose union meets all straight lines that intersect the unit square U is at least 2.00002. This is the first improvement on the lower bound of 2 known since 1964. A similar ...
We provide a smoothening criterion for group actions on manifolds by singular diffeomorphisms. We prove that if a countable group Gamma has the fixed point property FW for walls (for example, if it has property(T)), every aperiodic action of Gamma by diffe ...