Matrice (mathématiques)thumb|upright=1.5 En mathématiques, les matrices sont des tableaux d'éléments (nombres, caractères) qui servent à interpréter en termes calculatoires, et donc opérationnels, les résultats théoriques de l'algèbre linéaire et même de l'algèbre bilinéaire. Toutes les disciplines étudiant des phénomènes linéaires utilisent les matrices. Quant aux phénomènes non linéaires, on en donne souvent des approximations linéaires, comme en optique géométrique avec les approximations de Gauss.
Leibniz formula for determinantsIn algebra, the Leibniz formula, named in honor of Gottfried Leibniz, expresses the determinant of a square matrix in terms of permutations of the matrix elements. If is an matrix, where is the entry in the -th row and -th column of , the formula is where is the sign function of permutations in the permutation group , which returns and for even and odd permutations, respectively. Another common notation used for the formula is in terms of the Levi-Civita symbol and makes use of the Einstein summation notation, where it becomes which may be more familiar to physicists.
Décomposition LUEn algèbre linéaire, la décomposition LU est une méthode de décomposition d'une matrice comme produit d'une matrice triangulaire inférieure (comme lower, inférieure en anglais) par une matrice triangulaire supérieure (comme upper, supérieure). Cette décomposition est utilisée en analyse numérique pour résoudre des systèmes d'équations linéaires. Soit une matrice carrée. On dit que admet une décomposition LU s'il existe une matrice triangulaire inférieure formée de 1 sur la diagonale, notée , et une matrice triangulaire supérieure, notée , qui vérifient l'égalité Il n'est pas toujours vrai qu'une matrice admette une décomposition LU.
Mineur (algèbre linéaire)vignette|Il est possible d'utiliser les mineurs d'ordre 2 d'une matrice de dimension 3 pour calculer son déterminant. En algèbre linéaire, les mineurs d'une matrice sont les déterminants de ses sous-matrices carrées. Ainsi si A est une matrice de taille m par n, on appelle mineur d'ordre k le déterminant d'une sous-matrice carrée de taille k obtenue en supprimant m – k lignes et n – k colonnes de la matrice initiale, ce que l'on peut noter det A, où I ( J) est une partie à k éléments de {1, ..., m ( n)}.
Règle de CramerLa règle de Cramer (ou méthode de Cramer) est un théorème en algèbre linéaire qui donne la solution d'un système de Cramer, c'est-à-dire un système d'équations linéaires avec autant d'équations que d'inconnues et dont le déterminant de la matrice de coefficients est non nul, sous forme de quotients de déterminants. En calcul, la méthode est moins efficace que la méthode de résolution de Gauss pour des grands systèmes (à partir de quatre équations) dont les coefficients dans le premier membre sont explicitement donnés.
Adjugate matrixIn linear algebra, the adjugate or classical adjoint of a square matrix A is the transpose of its cofactor matrix and is denoted by adj(A). It is also occasionally known as adjunct matrix, or "adjoint", though the latter term today normally refers to a different concept, the adjoint operator which for a matrix is the conjugate transpose. The product of a matrix with its adjugate gives a diagonal matrix (entries not on the main diagonal are zero) whose diagonal entries are the determinant of the original matrix: where I is the identity matrix of the same size as A.