K-arbrevignette|Le graphe de Goldner–Harary est un exemple d'un 3-arbre planaire. En théorie des graphes, un k- arbre est un type de graphe non orienté. Un graphe est un k-arbre s'il peut être obtenu de la manière suivante : on part du graphe complet à ( k + 1) sommets, puis on ajoute des sommets tels que, pour un sommet v ajouté, v a exactement k voisins dans le graphe au moment de l'ajout, et ces voisins forment une clique. Les k-arbres sont exactement les graphes de largeur arborescente donnée, maximaux au sens que l'on ne peut pas ajouter d'arêtes sans augmenter leur largeur arborescente.
Linkless embeddingIn topological graph theory, a mathematical discipline, a linkless embedding of an undirected graph is an embedding of the graph into three-dimensional Euclidean space in such a way that no two cycles of the graph are linked. A flat embedding is an embedding with the property that every cycle is the boundary of a topological disk whose interior is disjoint from the graph. A linklessly embeddable graph is a graph that has a linkless or flat embedding; these graphs form a three-dimensional analogue of the planar graphs.
Graphe cactusvignette|upright=1.4| Un graphe cactus. En théorie des graphes, un graphe cactus (parfois appelé arbre cactus) est un graphe connexe dans lequel deux cycles simples quelconques ont au plus un sommet en commun. De manière équivalente, c'est un graphe connexe dans lequel chaque arête appartient à au plus un cycle simple, ou (pour les cactus non triviaux) dans lequel chaque bloc (sous-graphe maximal sans point d'articulation) est une arête ou un cycle.
Coloration des arêtes d'un graphethumb|Coloration des arêtes du graphe de Desargues avec trois couleurs. En théorie des graphes et en algorithmique, une coloration des arêtes d'un graphe consiste à attribuer à chaque arête une couleur, en évitant que deux arêtes ayant une extrémité commune soient de la même couleur. La figure ci-contre est un exemple de coloration d'arêtes correcte. On vérifie en effet qu'aucun sommet n'est commun à deux arêtes de même couleur. On remarquera qu'ici, il n'aurait pas été possible de colorer les arêtes du graphe avec seulement deux couleurs.
Graphe planaireDans la théorie des graphes, un graphe planaire est un graphe qui a la particularité de pouvoir se représenter sur un plan sans qu'aucune arête (ou arc pour un graphe orienté) n'en croise une autre. Autrement dit, ces graphes sont précisément ceux que l'on peut plonger dans le plan, ou encore les graphes dont le nombre de croisements est nul. Les méthodes associées à ces graphes permettent de résoudre des problèmes comme l'énigme des trois maisons et d'autres plus difficiles comme le théorème des quatre couleurs.
Lexique de la théorie des graphesNOTOC Acyclique graphe ne contenant pas de cycle. Adjacence une liste d'adjacence est une structure de données constituée d'un tableau dont le -ème élément correspond à la liste des voisins du -ème sommet. Adjacence une matrice d'adjacence est une matrice carrée usuellement notée , de dimensions , dont chaque élément est égal au nombre d'arêtes incidentes (ayant pour extrémités) aux sommets d'indices et (pour un graphe simple non pondéré, ). Dans le cas d'un graphe pondéré, chaque élément est égal à la somme du poids des arêtes incidentes.
Kuratowski's theoremIn graph theory, Kuratowski's theorem is a mathematical forbidden graph characterization of planar graphs, named after Kazimierz Kuratowski. It states that a finite graph is planar if and only if it does not contain a subgraph that is a subdivision of (the complete graph on five vertices) or of (a complete bipartite graph on six vertices, three of which connect to each of the other three, also known as the utility graph).
Graphe de Halinthumb|Un graphe de Halin. En théorie des graphes, une branche des mathématiques, un graphe de Halin est un graphe planaire construit à partir d'un arbre en reliant toutes ses feuilles dans un cycle qui fait le tour de l'arbre de telle façon que l'arbre reste planaire. On exige de plus que l'arbre comporte au moins quatre sommets et ne comporte pas de sommets de degré 2. Les graphes de Halin graphs sont nommés d'après le mathématicien allemand Rudolf Halin qui les a étudiés en 1971, mais les graphes de Halin cubiques avaient déjà été étudiés plus d'un siècle auparavant par Thomas Kirkman.
Densité d'un grapheEn mathématiques, et plus particulièrement en théorie des graphes, on peut associer à tout graphe un entier appelé densité du graphe. Ce paramètre mesure si le graphe a beaucoup d'arêtes ou peu. Un graphe dense (dense graph) est un graphe dans lequel le nombre d'arêtes (ou d'arcs) est proche du nombre maximal, par exemple un nombre quadratique par rapport au nombre de sommets. Un graphe creux (sparse graph) a au contraire peu d'arêtes, par exemple un nombre linéaire. La distinction entre graphe creux et dense est plutôt vague et dépend du contexte.
Théorème de VizingLe théorème de Vizing est un théorème de la théorie des graphes qui stipule que la coloration des arêtes d'un graphe G peut s'effectuer à l'aide de Δ+1 couleurs au maximum, où Δ est le degré maximal du graphe G. Il est dû à Vadim G. Vizing. Une coloration des arêtes d'un graphe consiste à attribuer à chaque arête une couleur, en évitant que deux arêtes ayant une extrémité commune soient de la même couleur. On note χ′(G) le nombre minimum de couleur nécessaire pour avoir une coloration des arêtes.