Probabilité libreLa théorie des probabilités libres est une théorie mathématique qui étudie des variables aléatoires non commutatives. La notion de « liberté » ou la propriété d'« indépendance libre » est l'analogue de la notion classique d'indépendance en probabilités, et elle est liée aux produits libres. Cette théorie a été initiée par Dan Voiculescu vers 1986 afin de d'aborder le problème de l'isomorphisme des facteurs de groupes libres, un problème important non résolu dans la théorie des algèbres d'opérateurs.
Loi de Cauchy (probabilités)La loi de Cauchy, appelée aussi loi de Lorentz, est une loi de probabilité continue qui doit son nom au mathématicien Augustin Louis Cauchy. Une variable aléatoire X suit une loi de Cauchy si sa densité , dépendant des deux paramètres et ( > 0) est définie par : La fonction ainsi définie s'appelle une lorentzienne. Elle apparaît par exemple en spectroscopie pour modéliser des raies d'émission. Cette distribution est symétrique par rapport à (paramètre de position), le paramètre donnant une information sur l'étalement de la fonction (paramètre d'échelle).
Loi de CantorEn théorie des probabilités, la loi de Cantor est une loi de probabilité singulière dont le support est l'ensemble de Cantor et la fonction de répartition est l'escalier de Cantor. Comme ces derniers, le nom de la loi est issue du mathématicien allemand Georg Cantor. Cette loi de probabilité est singulière, ainsi elle n'est pas absolument continue par rapport à la mesure de Lebesgue et donc ne possède pas de densité de probabilité ; elle ne possède pas non plus de fonction de masse.
Moment factorielEn mathématiques et plus particulièrement en théorie des probabilités, le moment factoriel désigne l'espérance de la factorielle décroissante d'une variable aléatoire. Les moments factoriels sont utiles dans l'étude de variables aléatoires à valeurs dans l'ensemble des entiers naturels. Les moments factoriels sont aussi utilisés dans le domaine mathématique de la combinatoire, pour étudier des structures mathématiques discrètes.
Inégalité de ChernoffEn théorie des probabilités, l'inégalité de Chernoff permet de majorer la queue d'une loi de probabilité, c'est-à-dire qu'elle donne une valeur maximale de la probabilité qu'une variable aléatoire dépasse une valeur fixée. On parle également de borne de Chernoff. Elle est nommée ainsi en l'honneur du mathématicien Herman Chernoff. Elle est comparable à l'inégalité de Markov mais donne une borne exponentielle. Il existe de nombreux énoncés, et de nombreux cas particuliers.