Nombre irrationnelUn nombre irrationnel est un nombre réel qui n'est pas rationnel, c'est-à-dire qu'il ne peut pas s'écrire sous la forme d'une fraction a/b, où a et b sont deux entiers relatifs (avec b non nul). Les nombres irrationnels peuvent être caractérisés de manière équivalente comme étant les nombres réels dont le développement décimal n'est pas périodique ou dont le développement en fraction continue est infini. On distingue, parmi les nombres irrationnels, deux sous-ensembles complémentaires : les nombres algébriques non rationnels et les nombres transcendants.
Nombre réelEn mathématiques, un nombre réel est un nombre qui peut être représenté par une partie entière et une liste finie ou infinie de décimales. Cette définition s'applique donc aux nombres rationnels, dont les décimales se répètent de façon périodique à partir d'un certain rang, mais aussi à d'autres nombres dits irrationnels, tels que la racine carrée de 2, π et e.
Constructive set theoryAxiomatic constructive set theory is an approach to mathematical constructivism following the program of axiomatic set theory. The same first-order language with "" and "" of classical set theory is usually used, so this is not to be confused with a constructive types approach. On the other hand, some constructive theories are indeed motivated by their interpretability in type theories. In addition to rejecting the principle of excluded middle (), constructive set theories often require some logical quantifiers in their axioms to be set bounded, motivated by results tied to impredicativity.
Proof by contradictionIn logic, proof by contradiction is a form of proof that establishes the truth or the validity of a proposition, by showing that assuming the proposition to be false leads to a contradiction. Although it is quite freely used in mathematical proofs, not every school of mathematical thought accepts this kind of nonconstructive proof as universally valid. More broadly, proof by contradiction is any form of argument that establishes a statement by arriving at a contradiction, even when the initial assumption is not the negation of the statement to be proved.
Polynôme formelEn algèbre, le terme de polynôme formel, ou simplement polynôme, est le nom générique donné aux éléments d'une structure construite à partir d'un ensemble de nombres. On considère un ensemble A de nombres, qui peut être celui des entiers ou des réels, et on lui adjoint un élément X, appelé indéterminée. La structure est constituée par les nombres, le polynôme X, les puissances de X multipliées par un nombre, aussi appelés monômes (de la forme aX), ainsi que les sommes de monômes. La structure est généralement notée A[X].
Axiome de l'infiniEn mathématiques, dans le domaine de la théorie des ensembles, l'axiome de l'infini est l'un des axiomes de la théorie des ensembles de Zermelo-Fraenkel, qui assure l'existence d'un ensemble infini, plus précisément d'un ensemble qui contient une représentation des entiers naturels. Il apparait dans la première axiomatisation de la théorie des ensembles, publiée par Ernst Zermelo en 1908, sous une forme cependant un peu différente de celle exposée ci-dessous.
Type dépendantEn Informatique et en Logique, un type dépendant est un type qui peut dépendre d'une valeur définie dans le langage typé. Les langages Agda et Gallina (de l'assistant de preuve Coq) sont des exemples de langages à type dépendant. Les types dépendants permettent par exemple de définir le type des listes à n éléments. Voici un exemple en Coq. Inductive Vect (A: Type): nat -> Type := | nil: Vect A 0 | cons (n: nat) (x: A) (t: Vect A n): Vect A (S n).
Coq (logiciel)Coq est un assistant de preuve utilisant le langage Gallina, développé par l'équipe PI.R2 de l’Inria au sein du laboratoire PPS du CNRS et en partenariat avec l'École polytechnique, le CNAM, l'Université Paris Diderot et l'Université Paris-Sud (et antérieurement l'École normale supérieure de Lyon). Le nom du logiciel (initialement CoC) est particulièrement adéquat car : il est français ; il est fondé sur le calcul des constructions (CoC abrégé en anglais) introduit par Thierry Coquand.
Intuitionistic type theoryIntuitionistic type theory (also known as constructive type theory, or Martin-Löf type theory) is a type theory and an alternative foundation of mathematics. Intuitionistic type theory was created by Per Martin-Löf, a Swedish mathematician and philosopher, who first published it in 1972. There are multiple versions of the type theory: Martin-Löf proposed both intensional and extensional variants of the theory and early impredicative versions, shown to be inconsistent by Girard's paradox, gave way to predicative versions.
Mathématiques à reboursLes mathématiques à rebours sont une branche des mathématiques qui pourrait être définie simplement par l'idée de « remonter aux axiomes à partir des théorèmes », contrairement au sens habituel (des axiomes vers les théorèmes). Un peu plus précisément, il s'agit d'évaluer la robustesse logique d'un ensemble de résultats mathématiques usuels en déterminant exactement quels axiomes sont nécessaires et suffisants pour les prouver. Le domaine a été créé par Harvey Friedman dans son article « Some systems of second order arithmetic and their use ».