Couvre la récupération de documents, la classification, l'analyse des sentiments et la détection de sujets à l'aide de matrices TF-IDF et de vecteurs de mots contextualisés tels que BERT.
Explore la gestion du texte, en se concentrant sur les matrices, les documents et les sujets, y compris les défis de la classification des documents et des modèles avancés comme BERT.
Introduit les bases de la récupération d'informations, couvrant l'indexation, les schémas de pondération, la similarité cosinus et l'évaluation des requêtes.
Plongez dans le traitement de grandes collections de textes numériques, en explorant les régularités cachées, la réutilisation du texte et l'analyse TF-IDF.
Présente les bases du traitement de données textuelles, couvrant la récupération de documents, la classification, l'analyse des sentiments et la détection de sujets.
Présente les bases de l'analyse de données textuelles, couvrant la récupération de documents, la classification, l'analyse des sentiments et la détection de sujets à l'aide de techniques de prétraitement et de modèles d'apprentissage automatique.
Explore le traitement des données texte, en dérivant des ensembles de données propres à partir de textes non structurés, et diverses techniques d'analyse de texte.
Introduit le traitement du langage naturel, qui couvre le prétraitement du texte, l'analyse des sentiments et l'analyse des sujets, en mettant l'accent sur l'établissement d'un indice de risque pour le changement climatique.