Concept

Équipotence

Concepts associés (19)
Puissance du continu
En mathématiques, plus précisément en théorie des ensembles, on dit qu'un ensemble E a la puissance du continu (ou parfois le cardinal du continu) s'il est équipotent à l'ensemble R des nombres réels, c'est-à-dire s'il existe une bijection de E dans R. Le cardinal de R est parfois noté , en référence au , nom donné à l'ensemble ordonné (R, ≤). Cet ordre (et a fortiori le cardinal de l'ensemble sous-jacent) est entièrement déterminé (à isomorphisme près) par quelques propriétés classiques.
Théorème de Cantor
vignette|Georg Cantor Le théorème de Cantor est un théorème mathématique, dans le domaine de la théorie des ensembles. Il énonce que le cardinal d'un ensemble E est toujours strictement inférieur au cardinal de l'ensemble de ses parties P(E), c'est-à-dire essentiellement qu'il n'existe pas de bijection entre E et P(E). Combiné avec l'axiome de l'ensemble des parties et l'axiome de l'infini de la théorie des ensembles usuelle, ce théorème implique qu'il existe une hiérarchie infinie d'ensembles infinis en termes de cardinalité.
New Foundations
En logique mathématique, New Foundations (NF) est une théorie des ensembles axiomatique introduite par Willard Van Orman Quine en 1937, dans un article intitulé « New Foundations for Mathematical Logic », et qui a connu un certain nombre de variantes. Pour éviter le paradoxe de Russell, le principe de compréhension est restreint aux formules stratifiées, une restriction inspirée de la théorie des types, mais où la notion de type est implicite.
Axiome de l'infini
En mathématiques, dans le domaine de la théorie des ensembles, l'axiome de l'infini est l'un des axiomes de la théorie des ensembles de Zermelo-Fraenkel, qui assure l'existence d'un ensemble infini, plus précisément d'un ensemble qui contient une représentation des entiers naturels. Il apparait dans la première axiomatisation de la théorie des ensembles, publiée par Ernst Zermelo en 1908, sous une forme cependant un peu différente de celle exposée ci-dessous.
Aleph (nombre)
vignette|Aleph-zéro, le plus petit aleph En théorie des ensembles, les alephs sont les cardinaux des ensembles infinis bien ordonnés. En quelque sorte, le cardinal d'un ensemble représente sa « taille », indépendamment de toute structure que puisse avoir cet ensemble (celle d'ordre en particulier dans le cas présent). Ils sont nommés ainsi d'après la lettre aleph, notée א, première lettre de l'alphabet hébreu, qui est utilisée pour les représenter.
Cantor's first set theory article
Cantor's first set theory article contains Georg Cantor's first theorems of transfinite set theory, which studies infinite sets and their properties. One of these theorems is his "revolutionary discovery" that the set of all real numbers is uncountably, rather than countably, infinite. This theorem is proved using Cantor's first uncountability proof, which differs from the more familiar proof using his diagonal argument.
Richard Dedekind
Julius Wilhelm Richard Dedekind (né le à Brunswick et mort le dans la même ville) est un mathématicien allemand et un proche disciple de Ernst Kummer en arithmétique. Pionnier de l'axiomatisation de l'arithmétique, il a proposé une définition axiomatique de l'ensemble des nombres entiers ainsi qu’une construction rigoureuse des nombres réels à partir des nombres rationnels (méthode des « coupures » de Dedekind).
Beth (nombre)
Dans la théorie des ensembles ZFC (avec axiome du choix), les nombres beth désignent une hiérarchie de nombres cardinaux indexée par les ordinaux, obtenue à partir du dénombrable en prenant le cardinal de l'ensemble des parties pour successeur, et la borne supérieure (ou réunion) pour passer à la limite. La notation de ces nombres utilise la deuxième lettre de l'alphabet hébreu, ou ב. En théorie des ensembles, les nombres cardinaux représentent la taille d'un ensemble.
Univers constructible
En mathématiques et en théorie des ensembles, l'univers constructible, ou l'univers constructible de Gödel, noté , est une classe d'ensembles qui peuvent entièrement être décrits en termes d'ensembles plus simples. Elle a été introduite en 1938 par Kurt Gödel dans son article sur . Il y montrait que cette classe est un de la théorie ZF et que l'axiome du choix et l'hypothèse généralisée du continu sont vrais dans ce modèle. Ceci prouve que ces deux propositions sont cohérentes avec les axiomes de ZF, à condition que ZF soit déjà cohérente.
Dedekind-infinite set
In mathematics, a set A is Dedekind-infinite (named after the German mathematician Richard Dedekind) if some proper subset B of A is equinumerous to A. Explicitly, this means that there exists a bijective function from A onto some proper subset B of A. A set is Dedekind-finite if it is not Dedekind-infinite (i.e., no such bijection exists). Proposed by Dedekind in 1888, Dedekind-infiniteness was the first definition of "infinite" that did not rely on the definition of the natural numbers.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.