Concept

Kahan summation algorithm

Concepts associés (9)
Erreur d'arrondi
Une erreur d'arrondi est la différence entre la valeur approchée calculée d'un nombre et sa valeur mathématique exacte. Des erreurs d'arrondi naissent généralement lorsque des nombres exacts sont représentés dans un système incapable de les exprimer exactement. Les erreurs d'arrondi se propagent au cours des calculs avec des valeurs approchées ce qui peut augmenter l'erreur du résultat final. Dans le système décimal des erreurs d'arrondi sont engendrées, lorsqu'avec une troncature, un grand nombre (peut-être une infinité) de décimales ne sont pas prises en considération.
Decimal floating point
Decimal floating-point (DFP) arithmetic refers to both a representation and operations on decimal floating-point numbers. Working directly with decimal (base-10) fractions can avoid the rounding errors that otherwise typically occur when converting between decimal fractions (common in human-entered data, such as measurements or financial information) and binary (base-2) fractions. The advantage of decimal floating-point representation over decimal fixed-point and integer representation is that it supports a much wider range of values.
Epsilon d'une machine
L'epsilon d'un microprocesseur (abrégé en eps) donne la limite supérieure de l'erreur d'approximation relative causé par l'arrondi des calculs de ce microprocesseur en arithmétique à virgule flottante. Cette valeur est une caractéristique de l'arithmétique des ordinateurs dans le domaine de l'analyse numérique, et par extension dans le sujet du calcul scientifique. Les valeurs d'epsilon standards suivantes s'appliquent pour le matériel implémentant les normes IEEE de calcul en virgule flottante: Une procédure d'arrondi est une procédure de choix de la représentation d'un nombre réel dans un système de numération en virgule flottante.
IEEE 754
En informatique, l’IEEE 754 est une norme sur l'arithmétique à virgule flottante mise au point par le Institute of Electrical and Electronics Engineers. Elle est la norme la plus employée actuellement pour le calcul des nombres à virgule flottante avec les CPU et les FPU. La norme définit les formats de représentation des nombres à virgule flottante (signe, mantisse, exposant, nombres dénormalisés) et valeurs spéciales (infinis et NaN), en même temps qu’un ensemble d’opérations sur les nombres flottants.
Double-precision floating-point format
Double-precision floating-point format (sometimes called FP64 or float64) is a floating-point number format, usually occupying 64 bits in computer memory; it represents a wide dynamic range of numeric values by using a floating radix point. Floating point is used to represent fractional values, or when a wider range is needed than is provided by fixed point (of the same bit width), even if at the cost of precision. Double precision may be chosen when the range or precision of single precision would be insufficient.
Arrondi (mathématiques)
Arrondir un nombre consiste à le remplacer par un autre nombre considéré comme plus simple ou plus pertinent. Ce procédé s'appelle arrondissage ou arrondissement et le nombre obtenu est un arrondi. Le résultat est moins précis, mais plus facile à employer. Il y a plusieurs façons d'arrondir. En général, on arrondit un nombre en en donnant une valeur approchée obtenue à partir de son développement décimal en réduisant le nombre de chiffres significatifs. L'arrondi peut se faire au plus proche, par excès ou par défaut.
Virgule flottante
vignette|Comme la notation scientifique, le nombre à virgule flottante a une mantisse et un exposant. La virgule flottante est une méthode d'écriture de nombres fréquemment utilisée dans les ordinateurs, équivalente à la notation scientifique en numération binaire. Elle consiste à représenter un nombre par : un signe (égal à −1 ou 1) ; une mantisse (aussi appelée significande) ; et un exposant (entier relatif, généralement borné).
Transformation de Fourier rapide
La transformation de Fourier rapide (sigle anglais : FFT ou fast Fourier transform) est un algorithme de calcul de la transformation de Fourier discrète (TFD). Sa complexité varie en O(n log n) avec le nombre n de points, alors que la complexité de l’algorithme « naïf » s'exprime en O(n). Ainsi, pour n = , le temps de calcul de l'algorithme rapide peut être 100 fois plus court que le calcul utilisant la formule de définition de la TFD.
Conditionnement (analyse numérique)
En analyse numérique, une discipline des mathématiques, le conditionnement mesure la dépendance de la solution d'un problème numérique par rapport aux données du problème, ceci afin de contrôler la validité d'une solution calculée par rapport à ces données. En effet, les données d'un problème numérique dépendent en général de mesures expérimentales et sont donc entachées d'erreurs. Il s'agit le plus souvent d'une quantité numérique. De façon plus générale, on peut dire que le conditionnement associé à un problème est une mesure de la difficulté de calcul numérique du problème.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.