In mathematics, trigonometric substitution is the replacement of trigonometric functions for other expressions. In calculus, trigonometric substitution is a technique for evaluating integrals. Moreover, one may use the trigonometric identities to simplify certain integrals containing radical expressions. Like other methods of integration by substitution, when evaluating a definite integral, it may be simpler to completely deduce the antiderivative before applying the boundaries of integration.
Let and use the identity
In the integral
we may use
Then,
The above step requires that and We can choose to be the principal root of and impose the restriction by using the inverse sine function.
For a definite integral, one must figure out how the bounds of integration change. For example, as goes from to then goes from to so goes from to Then,
Some care is needed when picking the bounds. Because integration above requires that , can only go from to Neglecting this restriction, one might have picked to go from to which would have resulted in the negative of the actual value.
Alternatively, fully evaluate the indefinite integrals before applying the boundary conditions. In that case, the antiderivative gives
as before.
The integral
may be evaluated by letting where so that and by the range of arcsine, so that and
Then,
For a definite integral, the bounds change once the substitution is performed and are determined using the equation with values in the range Alternatively, apply the boundary terms directly to the formula for the antiderivative.
For example, the definite integral
may be evaluated by substituting with the bounds determined using
Because and
On the other hand, direct application of the boundary terms to the previously obtained formula for the antiderivative yields
as before.
Let and use the identity
In the integral
we may write
so that the integral becomes
provided
For a definite integral, the bounds change once the substitution is performed and are determined using the equation with values in the range Alternatively, apply the boundary terms directly to the formula for the antiderivative.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Ce cours donne les connaissances fondamentales liées aux fonctions trigonométriques, logarithmiques et exponentielles. La présentation des concepts et des propositions est soutenue par une grande gamm
Ce cours donne les connaissances fondamentales liées aux fonctions trigonométriques, logarithmiques et exponentielles. La présentation des concepts et des propositions est soutenue par une grande gamm
Présentation des méthodes de la mécanique analytique (équations de Lagrange et de Hamilton) et introduction aux notions de modes normaux et de stabilité.
This course applies concepts from chemical kinetics and mass and energy balances to address chemical reaction engineering problems, with a focus on industrial applications. Students develop the abilit
In integral calculus, the tangent half-angle substitution is a change of variables used for evaluating integrals, which converts a rational function of trigonometric functions of into an ordinary rational function of by setting . This is the one-dimensional stereographic projection of the unit circle parametrized by angle measure onto the real line. The general transformation formula is: The tangent of half an angle is important in spherical trigonometry and was sometimes known in the 17th century as the half tangent or semi-tangent.
En mathématiques, l'intégration par parties (parfois abrégée en IPP) est une méthode qui permet de transformer l'intégrale d'un produit de fonctions en d'autres intégrales. Elle est fréquemment utilisée pour calculer une intégrale (ou une primitive) d'un produit de fonctions. Cette formule peut être considérée comme une version intégrale de la règle du produit. Le mathématicien Brook Taylor a découvert l'intégration par parties, publiant d'abord l'idée en 1715.
Une identité trigonométrique est une relation impliquant des fonctions trigonométriques, vérifiée pour toutes les valeurs possibles des variables intervenant dans la relation. Ces identités peuvent servir à simplifier une expression comportant des fonctions trigonométriques ou à la transformer (par exemple pour en calculer une primitive). Elles constituent donc une « boîte à outils » utile pour la résolution de problèmes. Les fonctions trigonométriques sont définies géométriquement ou analytiquement.
We present a first-principles investigation of the structural, electronic, and magnetic properties of the pristine and Fe-doped alpha-MnO2 using density-functional theory with extended Hubbard functionals. The onsite U and intersite V Hubbard parameters ar ...
The most promising solution towards cementitious materials with a lower carbon footprint is the partial substitution of the clinker by supplementary cementitious materials (SCMs) such as fly ash, blast furnace slag, limestone and calcined clays. The produc ...
Perovskite-derived Ni catalysts offer the remarkable benefit of redox stability that allows their regeneration after deactivation through poisoning or Ni particle growth. Here, the catalytic activity of LaFe0.8Ni0.2O3 towards CO2 methanation was improved b ...