Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
Given a transitive permutation group, a fundamental object for studying its higher transitivity properties is the permutation action of its isotropy subgroup. We reverse this relationship and introduce a universal construction of infinite permutation groups that takes as input a given system of imprimitivity for its isotropy subgroup. This produces vast families of kaleidoscopic groups. We investigate their algebraic properties, such as simplicity and oligomorphy; their homological properties, such as acyclicity or contrariwise large Schur multipliers; their topological properties, such as unique Polishability. Our construction is carried out within the framework of homeomorphism groups of topological dendrites.
Nicola Marzari, Davide Campi, Davide Grassano