Concepts associés (39)
Espace de modules
En mathématiques, un espace de modules est un espace paramétrant les diverses classes d'objets sous une relation d'équivalence ; l'intérêt est de pouvoir alors munir naturellement ces espaces de classes d'une structure supplémentaire. L'archétype de cette situation est la classification des courbes elliptiques par les points d'une courbe modulaire. Autre exemple : en géométrie différentielle, l'espace de modules d'une variété est l'espace des paramètres définissant la géométrie modulo les difféomorphismes locaux et globaux.
Guido Castelnuovo (mathématicien)
Guido Castelnuovo (né le à Venise et mort le à Rome) est un mathématicien et statisticien italien. Il est principalement connu pour ses contributions fondamentales à la géométrie algébrique. Guido Castelnuovo est né dans une famille juive, son père est Enrico Castelnuovo, romancier ayant participé activement au mouvement pour l'unification de l'Italie, et sa mère Emma Levi. Il est un des principaux artisans de l'École italienne de géométrie algébrique. En 1893 il reçoit le prix mathématique de l'Académie italienne des sciences.
Plongement de Segre
En géométrie algébrique, le plongement de Segre est un morphisme qui identifie le produit fibré de deux espaces projectifs à une variété projective. Une conséquence en est que le produit fibré de deux variétés projectives est une variété projective. On fixe un corps et deux entiers naturels et on considère le produit fibré des espaces projectifs de dimensions respectives . Alors il existe un morphisme de variétés algébriques qui est une immersion fermée (i.e. induit un isomorphe sur son image qui est une sous-variété fermée de ).
Nef line bundle
In algebraic geometry, a line bundle on a projective variety is nef if it has nonnegative degree on every curve in the variety. The classes of nef line bundles are described by a convex cone, and the possible contractions of the variety correspond to certain faces of the nef cone. In view of the correspondence between line bundles and divisors (built from codimension-1 subvarieties), there is an equivalent notion of a nef divisor. More generally, a line bundle L on a proper scheme X over a field k is said to be nef if it has nonnegative degree on every (closed irreducible) curve in X.
École italienne de géométrie algébrique
D'un point de vue historique, lécole italienne de géométrie algébrique fait référence à un grand groupe de mathématiciens italiens des XIXe et XXe siècles qui, avec leur travail vaste, profond et cohérent, mené méthodologiquement avec une approche d'étude et de recherche commune, a amené l'Italie au plus haut niveau en géométrie algébrique, en particulier en géométrie birationnelle et en théorie des surfaces algébriques, avec des résultats originaux de premier ordre. vignette|droite|Guido Castelnuovo (1865-1952).
Cremona group
In algebraic geometry, the Cremona group, introduced by , is the group of birational automorphisms of the -dimensional projective space over a field . It is denoted by or or . The Cremona group is naturally identified with the automorphism group of the field of the rational functions in indeterminates over , or in other words a pure transcendental extension of , with transcendence degree . The projective general linear group of order , of projective transformations, is contained in the Cremona group of order .
Irreducible component
In algebraic geometry, an irreducible algebraic set or irreducible variety is an algebraic set that cannot be written as the union of two proper algebraic subsets. An irreducible component is an algebraic subset that is irreducible and maximal (for set inclusion) for this property. For example, the set of solutions of the equation xy = 0 is not irreducible, and its irreducible components are the two lines of equations x = 0 and y =0.
Surface réglée
En géométrie, une surface réglée est une surface par chaque point de laquelle passe une droite, appelée génératrice, contenue dans la surface. On peut décrire une surface réglée S en la considérant comme la réunion d'une famille de droites D(u) dépendant d'un paramètre u parcourant une partie I de l'ensemble des réels. Il suffit pour cela de se donner pour chaque u dans I un point P(u) et un vecteur directeur de D(u). On obtient alors une représentation paramétrique de la surface S : L'arc paramétré par est appelé une courbe directrice de S.
Surface rationnelle
En géométrie algébrique, une branche des mathématiques, une surface rationnelle est une surface birationnellement équivalente à un plan projectif, ou en d'autres termes, une variété rationnelle de dimension deux. Chaque surface rationnelle non-singulière peut être obtenue après plusieurs éclatements d'une surface rationnelle minimale. Les surfaces rationnelles minimales sont des surfaces de Hirzebruch Σr pour r = 0 ou r ≥ 2. Diamant de Hodge où n est égal à 0 pour le plan projectif, 1 pour les surfaces de Hirzebruch et supérieur à 1 pour les autres surfaces rationnelles.
Contraction morphism
In algebraic geometry, a contraction morphism is a surjective projective morphism between normal projective varieties (or projective schemes) such that or, equivalently, the geometric fibers are all connected (Zariski's connectedness theorem). It is also commonly called an algebraic fiber space, as it is an analog of a fiber space in algebraic topology. By the Stein factorization, any surjective projective morphism is a contraction morphism followed by a finite morphism. Examples include ruled surfaces and Mori fiber spaces.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.