Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
En mathématiques, une algèbre de quaternions sur un corps commutatif K est une K-algèbre de dimension 4 qui généralise à la fois le corps des quaternions de Hamilton et l'algèbre des matrices carrées d'ordre 2. Pour être plus précis, ce sont les algèbres centrales simples sur K de degré 2. Dans cet article, on note K un corps commutatif (de caractéristique quelconque). On appelle algèbre de quaternions sur K toute algèbre (unitaire et associative) A de dimension 4 sur K qui est simple (c'est-à-dire que A et {0} sont les seuls idéaux bilatères) et dont le centre est K. On appelle corps de quaternions sur K toute algèbre de quaternions sur K dont l'anneau sous-jacent est un corps. Exemples Le seul corps de quaternions sur R (à isomorphisme près) est le corps H des quaternions de Hamilton. L'algèbre M2(K) des matrices carrées d'ordre 2 est une algèbre de quaternions sur K. Elle est isomorphe à l'algèbre EndK(E) des endomorphismes de tout plan vectoriel E sur K. Soit A une algèbre de quaternions sur K. Une involution d'algèbre de A est un endomorphisme d'espace vectoriel de A qui est involutif (J2 = IdA) et qui est un antihomomorphisme d'anneaux (J(xy) = J(y)J(x) quels que soient x et y dans A). Il existe une unique involution d'algèbre J de A telle que, pour tout élément x de A, x + J(x) et xJ(x) appartiennent à K. On l'appelle conjugaison de A. Pour tout élément x de A, on appelle conjugué de x et on note l'élément J(x) de A. Pour tout élément x de A, on appelle trace réduite de x et l'on note T(x) l'élément x + de K ; on appelle norme réduite de x et l'on note N(x) l'élément x de K. Exemples Dans H, le conjugué du quaternion q = a + bi + cj + dk est a – bi – cj – dk, la trace de q est 2a et la norme de q est a2 + b2 + c2 + d2. Dans M2(K), le conjugué de la matrice M = est la transposée de sa comatrice : , la trace réduite de M est la trace usuelle a + d de M et la norme réduite de M est le déterminant usuel ad – bc de M.
,