Topologie discrèteEn mathématiques, plus précisément en topologie, la topologie discrète sur un ensemble est une structure d'espace topologique où, de façon intuitive, tous les points sont « isolés » les uns des autres. Soit X un ensemble. L'ensemble des parties de X définit une topologie sur X appelée topologie discrète. X muni de cette topologie est alors appelé espace discret. On dit qu'une partie A d'un espace topologique X est un ensemble discret lorsque la topologie induite sur A est la topologie discrète.
Derived set (mathematics)In mathematics, more specifically in point-set topology, the derived set of a subset of a topological space is the set of all limit points of It is usually denoted by The concept was first introduced by Georg Cantor in 1872 and he developed set theory in large part to study derived sets on the real line. The derived set of a subset of a topological space denoted by is the set of all points that are limit points of that is, points such that every neighbourhood of contains a point of other than itself.
Nombre rationnelUn nombre rationnel est, en mathématiques, un nombre qui peut s'exprimer comme le quotient de deux entiers relatifs. On peut ainsi écrire les nombres rationnels sous forme de fractions notées où , le numérateur, est un entier relatif et , le dénominateur, est un entier relatif non nul. Un nombre entier est un nombre rationnel : il peut s'exprimer sous la forme . Chaque nombre rationnel peut s'écrire d'une infinité de manières différentes sous forme de fraction, par exemple ...
Ensemble de CantorEn mathématiques, l'ensemble de Cantor (ou ensemble triadique de Cantor, ou poussière de Cantor), est un sous-ensemble remarquable de la droite réelle construit par le mathématicien allemand Georg Cantor. Il s'agit d'un sous-ensemble fermé de l'intervalle unité [0, 1], d'intérieur vide. Il sert d'exemple pour montrer qu'il existe des ensembles infinis non dénombrables mais négligeables au sens de la mesure de Lebesgue. C'est aussi le premier exemple de fractale (bien que le terme ne soit apparu qu'un siècle plus tard), et il possède une dimension non entière.
Connexité (mathématiques)La connexité est une notion de topologie qui formalise le concept d'« objet d'un seul tenant ». Un objet est dit connexe s'il est fait d'un seul « morceau ». Dans le cas contraire, chacun des morceaux est une composante connexe de l'objet étudié. Soit un espace topologique E. Les quatre propositions suivantes sont équivalentes : E n'est pas la réunion de deux ouverts non vides disjoints ; E n'est pas la réunion de deux fermés non vides disjoints ; les seuls ouverts-fermés de E sont ∅ et E ; toute application continue de E dans un ensemble à deux éléments muni de la topologie discrète est constante.