Explore l'apprentissage en apprentissage profond pour les véhicules autonomes, couvrant les modèles prédictifs, RNN, ImageNet, et l'apprentissage de transfert.
Explore l'optimisation des réseaux neuronaux, y compris la rétropropagation, la normalisation des lots, l'initialisation du poids et les stratégies de recherche d'hyperparamètres.
Explore l'apprentissage auto-supervisé, l'apprentissage par transfert, les tâches de prédiction SSL, l'apprentissage des fonctionnalités, les rotations d'images, l'apprentissage contrasté et les apprenants en vision.
Introduit BulletArm, un référentiel de manipulation robotique open source et un cadre d'apprentissage couvrant les objectifs de conception, les tâches de référence et les algorithmes d'apprentissage.
Introduit des réseaux neuronaux, des fonctions d'activation et de rétropropagation pour la formation, en répondant aux défis et aux méthodes puissantes.