Foncteur adjointL'adjonction est une situation omniprésente en mathématiques, et formalisée en théorie des catégories par la notion de foncteurs adjoints. Une adjonction entre deux catégories et est une paire de deux foncteurs et vérifiant que, pour tout objet X dans C et Y dans D, il existe une bijection entre les ensembles de morphismes correspondants et la famille de bijections est naturelle en X et Y. On dit que F et G sont des foncteurs adjoints et plus précisément, que F est « adjoint à gauche de G » ou que G est « adjoint à droite de F ».
Catégorie des espaces topologiquesEn mathématiques, la catégorie des espaces topologiques est une construction qui rend compte abstraitement des propriétés générales observées dans l'étude des espaces topologiques. Ce n'est pas la seule catégorie qui possède les espaces topologiques comme objet, et ses propriétés générales sont trop faibles ; cela motive la recherche de « meilleures » catégories d'espaces. C'est un exemple de catégorie topologique.
Diagramme (théorie des catégories)En théorie des catégories, un diagramme est une collection d'objets et de flèches d'une catégorie donnée. En principe, un diagramme n'est pas un objet mathématique mais seulement une figure, destinée à faciliter la lecture d'un raisonnement. En pratique, on se sert souvent des diagrammes comme de symboles abréviateurs, qui évitent de nommer tous les objets et les flèches que l'on veut considérer; on dit souvent que "considérons le diagramme ci-dessus" au lieu de dire par exemple dans la catégorie des ensembles: "considérons quatre ensembles et une application de dans .
Produit (catégorie)Dans une catégorie, le produit d'une famille d'objets est sa limite, lorsqu'elle existe. Il est donc caractérisé par une propriété universelle ou de manière équivalente comme foncteur représentable. Soit une catégorie et une famille d'objets de . On cherche un couple , où X soit un objet de et une famille de morphismes , tel que pour tout objet Y de et pour toute famille de morphismes , il existe un unique morphisme tel que pour tout indice i, on ait . Si un tel couple existe, on dit que c'est un produit des .
Somme (catégorie)En mathématiques, dans une catégorie, la somme ou coproduit peut s'exprimer par une propriété universelle ou de manière équivalente comme foncteur représentable. Soit une catégorie et une famille d'objets de . On cherche un objet X ainsi qu'une famille de morphismes tel que pour tout objet Y de et pour toute famille de morphismes , il existe un unique morphisme tel que pour tout indice i, on a . Si un tel objet X existe, on l'appelle somme des . Lorsqu'elle existe, la somme des X représente le foncteur qui à un objet Y de associe le produit cartésien .
Category (mathematics)In mathematics, a category (sometimes called an abstract category to distinguish it from a ) is a collection of "objects" that are linked by "arrows". A category has two basic properties: the ability to compose the arrows associatively and the existence of an identity arrow for each object. A simple example is the , whose objects are sets and whose arrows are functions. is a branch of mathematics that seeks to generalize all of mathematics in terms of categories, independent of what their objects and arrows represent.
Objet initial et objet finalEn mathématiques, et plus particulièrement en théorie des catégories, un objet initial et un objet final sont des objets qui permettent de définir une propriété universelle. Donnons-nous une catégorie . Un objet de est dit initial si pour tout objet de , il existe une et une seule flèche de vers . De même, un objet est dit final (ou terminal) si pour tout objet , il existe une et une seule flèche de vers . En particulier, la seule flèche d'un objet initial (ou final) vers lui-même est l'identité.
Catégorie de foncteursUne catégorie de foncteurs ou catégorie des foncteurs entre deux catégories est une catégorie dont les objets sont les foncteurs entre ces catégories, et les morphismes sont les transformations naturelles entre ces foncteurs. Soient et des catégories. On définit la catégorie de foncteurs de dans , notée , ou parfois ou : Les objets de sont les foncteurs de dans ; Les morphismes sont les transformations naturelles. Il existe, pour tout objet F, un morphisme correspondant à l'identité incarné par le foncteur .
Limite projectiveEn mathématiques, dans la formalisation du langage des catégories, la limite projective est une généralisation du produit. Cette notion est duale de celle de limite inductive. Soient un ensemble ordonné, une famille d'ensembles indexée par , et pour chaque couple tel que , une application . On suppose que ces applications vérifient les deux propriétés suivantes : Une telle structure est appelée système projectif d'ensembles.
Diagonal functorIn , a branch of mathematics, the diagonal functor is given by , which maps as well as morphisms. This functor can be employed to give a succinct alternate description of the product of objects within the : a product is a universal arrow from to . The arrow comprises the projection maps. More generally, given a , one may construct the , the objects of which are called . For each object in , there is a constant diagram that maps every object in to and every morphism in to .