Loi des cosinusEn mathématiques, la loi des cosinus est un théorème de géométrie couramment utilisé en trigonométrie, qui relie dans un triangle la longueur d'un côté à celles des deux autres et au cosinus de l'angle formé par ces deux côtés. Cette loi s'exprime de façon analogue en géométrie plane, sphérique ou hyperbolique. Cette loi généralise le théorème de Pythagore. Les Éléments d'Euclide contenaient déjà une approche géométrique de la généralisation du théorème de Pythagore dans deux cas particuliers : ceux d'un triangle obtusangle et d'un triangle acutangle.
Identité trigonométriqueUne identité trigonométrique est une relation impliquant des fonctions trigonométriques, vérifiée pour toutes les valeurs possibles des variables intervenant dans la relation. Ces identités peuvent servir à simplifier une expression comportant des fonctions trigonométriques ou à la transformer (par exemple pour en calculer une primitive). Elles constituent donc une « boîte à outils » utile pour la résolution de problèmes. Les fonctions trigonométriques sont définies géométriquement ou analytiquement.
Formule de haversineLa formule de haversine permet de déterminer la distance du grand cercle entre deux points d'une sphère, à partir de leurs longitudes et latitudes. Largement utilisée dans la navigation, c'est un cas particulier d'une formule plus générale de la trigonométrie sphérique, la loi des haversines, qui associe les côtés et les angles des triangles sphériques. La table de haversines remonte au début du , avec une publication par James Andrew en 1805, même si Florian Cajori cite son utilisation par José Mendoza y Ríos en 1801.
Trigonométrievignette|droite|Un triangle rectangle sur lequel est indiqué un angle Â, le côté adjacent à cet angle, le côté opposé à celui-ci, l'hypoténuse du triangle, et son angle droit. vignette|Cercle trigonométrique et angles remarquables vignette|droite|Planche sur la Trigonométrie, 1728 Cyclopaedia. La trigonométrie (du grec τρίγωνος / trígonos, « triangulaire », et μέτρον / métron, « mesure ») est une branche des mathématiques qui traite des relations entre distances et angles dans les triangles et des fonctions trigonométriques telles que sinus, cosinus, tangente.
Loi des sinusEn trigonométrie, la loi des sinus est une relation de proportionnalité entre les longueurs des côtés d'un triangle et les sinus des angles respectivement opposés. Elle permet, connaissant deux angles et un côté, de calculer la longueur des autres côtés. Il existe une formule des sinus de présentation analogue en trigonométrie sphérique. Ces lois sont énoncées et démontrées, pour la forme sphérique, par Abu Nasr Mansur au début du et, pour la forme plane, par Nasir al-Din al-Tusi au début du .
Résolution d'un triangleEn géométrie, la résolution d'un triangle consiste en la détermination des différents éléments d'un triangle (longueurs des côtés, mesure des angles, aire) à partir de certains autres. Historiquement, la résolution des triangles fut motivée en cartographie, pour la mesure des distances par triangulation ; en géométrie euclidienne chez les Grecs, pour la résolution de nombreux problèmes de géométrie ; en navigation, pour le point, qui utilise des calculs de coordonnées terrestres et astronomiques (trigonométrie sphérique).
Distance du grand cercleLa distance du grand cercle, également appelée distance orthodromique, est la plus courte distance entre deux points sur une sphère. La surface de la Terre étant approximativement sphérique, la distance du grand cercle est généralement employée pour mesurer la distance entre deux points à sa surface, à partir de leur longitude et leur latitude. R est le rayon de la sphère (le rayon de la Terre vaut environ ). δ est la latitude (en radians). λ est la longitude (en radians). Sur une sphère de rayon R, la dist
Formule de MollweideLes formules de Mollweide, nommées d'après le mathématicien et astronome prussien (1774-1825), sont les identités trigonométriques suivantes en géométrie du triangle : où (cf. figure ci-contre) a, b et c désignent les longueurs des côtés d'un triangle ABC et α, β et γ les mesures des angles opposés. La loi des tangentes en est un corollaire immédiat, compte tenu du fait que γ/2 est complémentaire de α + β/2 (donc le cosinus de l'un est égal au sinus de l'autre).
Trigonométrie sphériqueLa trigonométrie sphérique est un ensemble de relations analogues à celles de la trigonométrie euclidienne mais portant sur les angles et distances repérés sur une sphère. La figure de base est le triangle sphérique, délimité non plus par des segments de droites mais par des arcs de demi-grands cercles de cette sphère. Les règles habituelles de la trigonométrie euclidienne ne sont pas applicables ; par exemple la somme des angles d'un triangle situé sur une sphère, s'ils sont exprimés en degrés, est supérieure à 180 degrés.