Concepts associés (17)
Espace fonctionnel
En mathématiques, un espace fonctionnel est un ensemble d'applications d'une certaine forme d'un ensemble vers un ensemble Il est appelé « espace » car, selon les cas, il peut être un espace topologique, un espace vectoriel, ou les deux. Les espaces fonctionnels apparaissent dans différents domaines des mathématiques : en théorie des ensembles, l'ensemble des parties d'un ensemble peut être identifié avec l'ensemble des fonctions de à valeurs dans , noté .
Topologie discrète
En mathématiques, plus précisément en topologie, la topologie discrète sur un ensemble est une structure d'espace topologique où, de façon intuitive, tous les points sont « isolés » les uns des autres. Soit X un ensemble. L'ensemble des parties de X définit une topologie sur X appelée topologie discrète. X muni de cette topologie est alors appelé espace discret. On dit qu'une partie A d'un espace topologique X est un ensemble discret lorsque la topologie induite sur A est la topologie discrète.
Ouvert (topologie)
En mathématiques et plus particulièrement en topologie générale, un ensemble ouvert, aussi appelé une partie ouverte ou, plus fréquemment, un ouvert, est un sous-ensemble d'un espace topologique qui ne contient aucun point de sa frontière. L'ouvert est l'élément de base d'un espace topologique. Il existe plusieurs définitions des ouverts suivant le type d'espace concerné. Nous reprenons ici la définition pour le cas le plus général à savoir celui des espaces topologiques.
Filter (set theory)
In mathematics, a filter on a set is a family of subsets such that: and if and , then If , and , then A filter on a set may be thought of as representing a "collection of large subsets", one intuitive example being the neighborhood filter. Filters appear in order theory, model theory, and set theory, but can also be found in topology, from which they originate. The dual notion of a filter is an ideal.
Continuous function
In mathematics, a continuous function is a function such that a continuous variation (that is a change without jump) of the argument induces a continuous variation of the value of the function. This means that there are no abrupt changes in value, known as discontinuities. More precisely, a function is continuous if arbitrarily small changes in its value can be assured by restricting to sufficiently small changes of its argument. A discontinuous function is a function that is .
Order theory
Order theory is a branch of mathematics that investigates the intuitive notion of order using binary relations. It provides a formal framework for describing statements such as "this is less than that" or "this precedes that". This article introduces the field and provides basic definitions. A list of order-theoretic terms can be found in the order theory glossary. Orders are everywhere in mathematics and related fields like computer science. The first order often discussed in primary school is the standard order on the natural numbers e.
Mackey topology
In functional analysis and related areas of mathematics, the Mackey topology, named after George Mackey, is the finest topology for a topological vector space which still preserves the continuous dual. In other words the Mackey topology does not make linear functions continuous which were discontinuous in the default topology. A topological vector space (TVS) is called a Mackey space if its topology is the same as the Mackey topology.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.