In mathematics, a continuous function is a function such that a continuous variation (that is a change without jump) of the argument induces a continuous variation of the value of the function. This means that there are no abrupt changes in value, known as discontinuities. More precisely, a function is continuous if arbitrarily small changes in its value can be assured by restricting to sufficiently small changes of its argument. A discontinuous function is a function that is . Up until the 19th century, mathematicians largely relied on intuitive notions of continuity, and considered only continuous functions. The epsilon–delta definition of a limit was introduced to formalize the definition of continuity.
Continuity is one of the core concepts of calculus and mathematical analysis, where arguments and values of functions are real and complex numbers. The concept has been generalized to functions between metric spaces and between topological spaces. The latter are the most general continuous functions, and their definition is the basis of topology.
A stronger form of continuity is uniform continuity. In order theory, especially in domain theory, a related concept of continuity is Scott continuity.
As an example, the function H(t) denoting the height of a growing flower at time t would be considered continuous. In contrast, the function M(t) denoting the amount of money in a bank account at time t would be considered discontinuous, since it "jumps" at each point in time when money is deposited or withdrawn.
A form of the epsilon–delta definition of continuity was first given by Bernard Bolzano in 1817. Augustin-Louis Cauchy defined continuity of as follows: an infinitely small increment of the independent variable x always produces an infinitely small change of the dependent variable y (see e.g. Cours d'Analyse, p. 34). Cauchy defined infinitely small quantities in terms of variable quantities, and his definition of continuity closely parallels the infinitesimal definition used today (see microcontinuity).
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
A topological space is a space endowed with a notion of nearness. A metric space is an example of a topological space, where the concept of nearness is measured by a distance function. Within this abs
En mathématiques et plus particulièrement en topologie, un espace métrique est un ensemble au sein duquel une notion de distance entre les éléments de l'ensemble est définie. Les éléments seront, en général, appelés des points. Tout espace métrique est canoniquement muni d'une topologie. Les espaces métrisables sont les espaces topologiques obtenus de cette manière. L'exemple correspondant le plus à notre expérience intuitive de l'espace est l'espace euclidien à trois dimensions.
vignette|Diagramme de calcul pour la fonction En mathématiques, une fonction permet de définir un résultat (le plus souvent numérique) pour chaque valeur d’un ensemble appelé domaine. Ce résultat peut être obtenu par une suite de calculs arithmétiques ou par une liste de valeurs, notamment dans le cas de relevé de mesures physiques, ou encore par d’autres procédés comme les résolutions d’équations ou les passages à la limite. Le calcul effectif du résultat ou son approximation repose éventuellement sur l’élaboration de fonction informatique.
La topologie générale est une branche des mathématiques qui fournit un vocabulaire et un cadre général pour traiter des notions de limite, de continuité, et de voisinage. Les espaces topologiques forment le socle conceptuel permettant de définir ces notions. Elles sont suffisamment générales pour s'appliquer à un grand nombre de situations différentes : ensembles finis, ensembles discrets, espaces de la géométrie euclidienne, espaces numériques à n dimensions, espaces fonctionnels plus complexes, mais aussi en géométrie algébrique.
Le contenu de ce cours correspond à celui du cours d'Analyse I, comme il est enseigné pour les étudiantes et les étudiants de l'EPFL pendant leur premier semestre. Chaque chapitre du cours correspond
Concepts de base de l'analyse réelle et introduction aux nombres réels.
Explore l'approximation Landau appliquée au modèle Ising en physique statistique.
Explore les limites, la continuité et les propriétés des fonctions élémentaires, en soulignant l'importance de la compréhension des fonctions continues.
Couvre la définition et les critères des fonctions continues et explore le théorème de valeur intermédiaire.
Recently, we have applied the generalized Littlewood theorem concerning contour integrals of the logarithm of the analytical function to find the sums over inverse powers of zeros for the incomplete gamma and Riemann zeta functions, polygamma functions, an ...
MDPI2024
, ,
Prediction is a vital component of motion planning for autonomous vehicles (AVs). By reasoning about the possible behavior of other target agents, the ego vehicle (EV) can navigate safely, efficiently, and politely. However, most of the existing work overl ...
We introduce an algorithm to reconstruct a mesh from discrete samples of a shape's Signed Distance Function (SDF). A simple geometric reinterpretation of the SDF lets us formulate the problem through a point cloud, from which a surface can be extracted wit ...