Relation asymétriqueEn mathématiques, une relation (binaire, interne) R est dite asymétrique si elle vérifie : ou encore, si son graphe est disjoint de celui de sa relation réciproque. L'asymétrie est parfois appelée « antisymétrie forte », par opposition à l'antisymétrie (usuelle, ou « faible »). En effet, une relation est asymétrique si et seulement si elle est à la fois antisymétrique et antiréflexive. les relations d'ordre strict, qui sont les relations transitives et asymétriques ; dans les entiers, la relation "est le successeur de" ; dans un ensemble de personnes, la relation « est enfant de » : personne n'est enfant d'un de ses enfants.
Homogeneous relationIn mathematics, a homogeneous relation (also called endorelation) on a set X is a binary relation between X and itself, i.e. it is a subset of the Cartesian product X × X. This is commonly phrased as "a relation on X" or "a (binary) relation over X". An example of a homogeneous relation is the relation of kinship, where the relation is between people. Common types of endorelations include orders, graphs, and equivalences. Specialized studies of order theory and graph theory have developed understanding of endorelations.
Total relationIn mathematics, a binary relation R ⊆ X×Y between two sets X and Y is total (or left total) if the source set X equals the domain {x : there is a y with xRy }. Conversely, R is called right total if Y equals the range {y : there is an x with xRy }. When f: X → Y is a function, the domain of f is all of X, hence f is a total relation. On the other hand, if f is a partial function, then the domain may be a proper subset of X, in which case f is not a total relation.
Relation transitiveEn mathématiques, une relation transitive est une relation binaire pour laquelle une suite d'objets reliés consécutivement aboutit à une relation entre le premier et le dernier. Formellement, la propriété de transitivité s'écrit, pour une relation définie sur un ensemble : Une relation binaire non transitive est donc une relation pour laquelle la propriété universelle ci-dessus est fausse, c'est-à-dire qu'il existe un élément en relation avec un deuxième qui lui-même est en relation avec un troisième, sans que le premier soit en relation avec le troisième : C'est le cas de l'orthogonalité de droites, par exemple.
Relation binaireEn mathématiques, une relation binaire entre deux ensembles E et F (ou simplement relation entre E et F) est définie par un sous-ensemble du produit cartésien E × F, soit une collection de couples dont la première composante est dans E et la seconde dans F. Cette collection est désignée par le graphe de la relation. Les composantes d'un couple appartenant au graphe d'une relation R sont dits en relation par R. Une relation binaire est parfois appelée correspondance entre les deux ensembles.
Opération ternaireEn mathématiques, une opération ternaire est une opération n-aire avec n = 3. Une opération ternaire sur un ensemble A prend trois éléments quelconques données de A et les combine pour former un seul élément de A. En informatique, un opérateur ternaire est un opérateur qui prend trois arguments. Les arguments et les résultats peuvent être de différents types. De nombreux langages de programmation qui utilisent la syntaxe ressemblant à C disposent d'un opérateur ternaire, ?:, qui définit une expression conditionnelle.
Weak orderingIn mathematics, especially order theory, a weak ordering is a mathematical formalization of the intuitive notion of a ranking of a set, some of whose members may be tied with each other. Weak orders are a generalization of totally ordered sets (rankings without ties) and are in turn generalized by (strictly) partially ordered sets and preorders.
Relation antisymétriqueEn mathématiques, une relation (binaire, interne) R sur un ensemble E est dite antisymétrique si elle vérifie : ce qui signifie que l'intersection de son graphe avec celui de sa relation réciproque est incluse dans la diagonale de E, autrement dit : La condition (1) peut aussi s'écrire On remarque l'antisymétrie d'une relation sur son diagramme sagittal par le fait qu'il n'y a pas de double flèche (donc que des sens uniques).
Composition of relationsIn the mathematics of binary relations, the composition of relations is the forming of a new binary relation R; S from two given binary relations R and S. In the calculus of relations, the composition of relations is called relative multiplication, and its result is called a relative product. Function composition is the special case of composition of relations where all relations involved are functions. The word uncle indicates a compound relation: for a person to be an uncle, he must be the brother of a parent.
Involution (mathématiques)En mathématiques, une involution est une application bijective qui est sa propre réciproque, c'est-à-dire par laquelle chaque élément est l'image de son image. C'est le cas par exemple du changement de signe dans l'ensemble des nombres réels, ou des symétries du plan ou de l'espace en géométrie euclidienne. En algèbre linéaire, les endomorphismes involutifs sont d'ailleurs appelés symétries. Des involutions apparaissent dans de nombreux domaines des mathématiques, notamment en combinatoire et en topologie.