Concepts associés (6)
James Clerk Maxwell
James Clerk Maxwell ( à Édimbourg en Écosse - à Cambridge en Angleterre) est un physicien et mathématicien écossais. Il est principalement connu pour avoir unifié en un seul ensemble d'équations, les équations de Maxwell, l'électricité, le magnétisme et l'induction, en incluant une importante modification du théorème d'Ampère. Ce fut à l'époque le modèle le plus unifié de l'électromagnétisme. Il est également célèbre pour avoir interprété, dans un article scientifique, la lumière comme étant un phénomène électromagnétique en s'appuyant sur les travaux de Michael Faraday.
Nabla
Nabla, noté ou selon les conventions utilisées, est un symbole mathématique pouvant aussi bien désigner le gradient d'une fonction en analyse vectorielle qu'une connexion de Koszul en géométrie différentielle. Les deux notions sont reliées, ce qui explique l'utilisation d'un même symbole. En physique, il est utilisé en dimension 3 pour représenter aisément plusieurs opérateurs vectoriels, couramment utilisés en électromagnétisme et en dynamique des fluides.
Opérateur laplacien
L'opérateur laplacien, ou simplement le laplacien, est l'opérateur différentiel défini par l'application de l'opérateur gradient suivie de l'application de l'opérateur divergence : Intuitivement, il combine et relie la description statique d'un champ (décrit par son gradient) aux effets dynamiques (la divergence) de ce champ dans l'espace et le temps. C'est l'exemple le plus simple et le plus répandu d'opérateur elliptique.
Analyse vectorielle
L'analyse vectorielle est une branche des mathématiques qui étudie les champs de scalaires et de vecteurs suffisamment réguliers des espaces euclidiens, c'est-à-dire les applications différentiables d'un ouvert d'un espace euclidien à valeurs respectivement dans et dans . Du point de vue du mathématicien, l'analyse vectorielle est donc une branche de la géométrie différentielle. Cette dernière inclut l'analyse tensorielle qui apporte des outils plus puissants et une analyse plus concise entre autres des champs de vecteurs.
Opérateur différentiel
En mathématiques, et plus précisément en analyse, un opérateur différentiel est un opérateur agissant sur des fonctions différentiables. Lorsque la fonction est à une seule variable, l'opérateur différentiel est construit à partir des dérivées ordinaires. Lorsque la fonction est à plusieurs variables, l'opérateur différentiel est construit à partir des dérivées partielles. Un opérateur différentiel agissant sur deux fonctions est appelé opérateur bidifférentiel.
Rotationnel
L'opérateur rotationnel est un opérateur différentiel aux dérivées partielles qui, à un champ vectoriel tridimensionnel, noté ou , fait correspondre un autre champ noté au choix : ou bien ou bien ou bien ou bien selon les conventions de notations utilisées pour les vecteurs. vignette|Exemple d'un champ de vecteurs ayant un rotationnel uniforme, analogue à un fluide tournant autour d'un point central.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.