MétalangageUn métalangage est un formalisme conçu pour décrire rigoureusement un langage. Un langage est décrit par une grammaire, et la description de sa grammaire est son métalangage. Ainsi le langage des expressions rationnelles ou la forme de Backus-Naur en informatique sont des métalangages. Un métalangage ne décrit pas seulement la syntaxe, il sert aussi à décrire la sémantique. Un langage qui est son propre métalangage pour la syntaxe et la sémantique est dit réflexif.
MétathéorèmeIn logic, a metatheorem is a statement about a formal system proven in a metalanguage. Unlike theorems proved within a given formal system, a metatheorem is proved within a metatheory, and may reference concepts that are present in the metatheory but not the object theory. A formal system is determined by a formal language and a deductive system (axioms and rules of inference). The formal system can be used to prove particular sentences of the formal language with that system.
Substitution (logic)A substitution is a syntactic transformation on formal expressions. To apply a substitution to an expression means to consistently replace its variable, or placeholder, symbols with other expressions. The resulting expression is called a substitution instance, or instance for short, of the original expression. Where ψ and φ represent formulas of propositional logic, ψ is a substitution instance of φ if and only if ψ may be obtained from φ by substituting formulas for symbols in φ, replacing each occurrence of the same symbol by an occurrence of the same formula.
Modèle non standard de l'arithmétiqueEn logique mathématique, un modèle non standard de l'arithmétique est un modèle non standard de l'arithmétique de Peano, qui contient des nombres non standards. Le modèle standard de l'arithmétique contient exactement les nombres naturels 0, 1, 2, etc. Les éléments du domaine de tout modèle de l'arithmétique de Peano sont ordonnés linéairement et possèdent un segment initial isomorphe aux nombres naturels standards. Un modèle non standard est un modèle qui contient également des éléments en dehors de ce segment initial.
MétalogiqueLa métalogique est l'étude de la métathéorie de la logique. Alors que la logique étudie comment des systèmes logiques peuvent être utilisés pour construire un argument valide et correct, la métalogique concerne les vérités qui peuvent être dérivées des langages et des systèmes qui sont utilisés pour exprimer des vérités. Les objets de base de l'étude métalogique sont les langages formels des systèmes formels, et leurs interprétations.
Epsilon de HilbertL'Epsilon de Hilbert est une extension d'un langage formel par l'opérateur epsilon, où celui-ci se substitue aux quantificateurs dans le langage en tant que méthode conduisant à une preuve de la cohérence pour l'extension du langage formel. L'opérateur epsilon et la méthode de substitution epsilon sont généralement appliqués à un calcul de prédicats, suivis par une démonstration de la cohérence.
Ground expressionIn mathematical logic, a ground term of a formal system is a term that does not contain any variables. Similarly, a ground formula is a formula that does not contain any variables. In first-order logic with identity with constant symbols and , the sentence is a ground formula. A ground expression is a ground term or ground formula. Consider the following expressions in first order logic over a signature containing the constant symbols and for the numbers 0 and 1, respectively, a unary function symbol for the successor function and a binary function symbol for addition.
Science formelleLes sciences formelles (ou sciences logico-formelles) explorent déductivement, selon des règles de formation et de démonstration, des systèmes axiomatiques. Les sciences formelles regroupent les mathématiques, la logique et l'informatique théorique. L'algèbre est la branche des mathématiques qui étudie les structures algébriques, indépendamment de la notion de limite (rattachée à l'analyse) et de la notion de représentation graphique (rattachée à la géométrie).
Logical constantIn logic, a logical constant or constant symbol of a language is a symbol that has the same semantic value under every interpretation of . Two important types of logical constants are logical connectives and quantifiers. The equality predicate (usually written '=') is also treated as a logical constant in many systems of logic.